Solar Energy Technology: Photovoltaic Systems

As more school districts across the nation embrace renewable energy technologies, many are now considering the merits of photovoltaic systems. This technology is a form of solar energy that converts sunlight to electricity through the use of photovoltaic cells.

Photovoltaic cells — often referred to as PV cells or solar cells — are devices made of semiconductor materials, such as silicon. When sunlight hits a cell, the light causes the movement of electrons, which is then captured by wires attached to the cell to form a direct electric current. The direct current is converted to alternating current through electrical inverters, and is then available for building use. Several PV cells form a module, and photovoltaic arrays or panels, as might typically be found on a rooftop, consist of several modules.

Like other forms of renewable energy, photovoltaic technology holds much promise for energy-savings while also reflecting a district’s commitment to sustainability and the protection of natural resources. When considering such a step, schools should look first to be sure that a building is as energy-efficient in design and operations as possible. This may include conducting an energy audit and reviewing all of the building systems and equipment.

Next, explore options to help fund renewable energy options, including photovoltaics, such as subsidies, grants and rebates — particularly at the state level. Many states have adopted incentive structures such as Renewable Portfolio Standards and Feed-in Tariffs. Feed-in tariffs require that utilities pay a higher-than-market rate for energy supplied through renewable sources.

School districts may also consider a lease-back arrangement, through which third parties lease roof space to install, operate and maintain photovoltaic panels and enable the district to lock in a utility rate. These agreements are often called Power Purchase Agreements or PPAs. All of these options can help offset system first cost and will likely expand as more states adopt Renewable Portfolio Standards. For information on state, local, utility and federal incentives and policies, visit the Database of State Incentives for Renewables & Efficiency.

Schools are good candidates for the benefits of photovoltaic technology for a number of reasons. The energy demand within schools is highest during the day, when there is the most gain available from solar energy. School buildings generally feature expansive rooftops that will easily accommodate a photovoltaic array. The technology is in keeping with the increasing focus on environmental stewardship and sustainability that our nation’s schools now readily embrace, and many schools are finding that the systems can be used successfully as a hands-on teaching tool. Information on incorporating energy-related resources and activities into a curriculum is available through the National Energy Education Development Project.

Most systems are roof-mounted and require southern exposure with no obstruction from trees or other buildings. Schools will typically have “net-metered” systems that are connected to the utility grid. This allows for use of the utility when solar energy is not available, and for potentially returning power to the grid when the amount of solar energy exceeds building demand. Schools in particular may be able to bank excess power with the utility during weekends and the summer, when building use may be lower, as credit against future energy demand.

One school that has successfully implemented photovoltaic technology is the newly reopened Phelps Architecture, Engineering and Construction High School in Washington, D.C. Phelps, a historic school property that was recently modernized after standing vacant for several years, now features four rooftop photovoltaic arrays. The system allows for peak shaving, which reduces the building’s peak electrical demand and is monitored regularly by students as part of the school’s curriculum.

Terry Liette is a principal and the executive director of engineering with Fanning/Howey Associates, Inc.
Ian Hadden is client liaison for engineering and sustainable design for the firm.



About the Authors

Terry Liette, PE, LEED-AP, [email protected], is chief engineering officer for Fanning Howey, a national leader in the design of learning environments.


Featured

  • StarRez Releases 2025 State of Student Housing Report

    Student housing software solutions provider StarRez recently released its second State of the Student Housing Industry Report, according to a news release. The report is based on the results of survey data from more than 400 higher education institutions around the world, both StarRez clients and not.

  • AP Construction Breaks Ground on Two Projects for Austin ISD

    Adolfson & Peterson Construction (AP) recently announced that it has broken ground on two renovation projects for the Austin Independent School District, according to a news release. The work at McCallum and Anderson High Schools totals 97,350 square feet and is scheduled for completion in January 2027.

  • New Kent State Academic Building Earns LEED Silver Certification

    Kent State University in Kent, Ohio, recently announced that its newest academic building, Crawford Hall, has earned a LEED Silver certification from the U.S. Green Building Council, according to a news release. The facility was recognized for its innovative design, water conservation technologies, energy-efficient systems, and sustainable construction materials, among other features.

  • Anderson Brulé Architects Rebrands as ABA Studios

    Anderson Brulé Architects, based in San Jose, Calif., recently announced that it is celebrating 40 years of service by rebranding under a new name, according to a news release. The architectural, interior design, and planning firm will now be known as ABA Studios to refresh its identity underneath a new generation of leadership.

Digital Edition