Combined Schools Boost Sustainability

While the Beavercreek School District initially retained SHP Leading Design to design and engineer two separate new schools — a 92,000-square-foot elementary school for 700 students and a 163,000-square-foot middle school for 1,150 students — additional planning and research revealed that a combined campus could realize a number of advantages while still giving both schools a separate identity and feel.

The combined, 50-acre campus that opened in 2013 offers numerous economies of scale advantages. It eliminated the need to develop two separate sites and construct separate access roads and turn lanes, and made it possible to share a physical plant, HVAC system, kitchen, technology infrastructure and maintenance staff . A shared quadrangle both unites and separates the schools, which have their own dining areas, gymnasiums, administrative offices, playground areas and parking lots to help them achieve the two-school feel the district required.

Energy-efficient construction methods and materials were used throughout to help ensure the new schools would operate efficiently from day one and in the future. An independent energy audit of the new campus revealed that the district will realize $150,000 in electricity savings annually, earning a record $492,000 energy rebate from Dayton Power & Light (DP&L). The rebate, combined with an $86,768 DP&L rebate for energy efficiency improvements at six existing buildings, brought total rebates earned by Beavercreek from DP&L to $578,819 which represents the largest energy rebate in the utility company’s history.

High efficiency measures in the Beavercreek City Schools building program included the following.

  • A geothermal heating and cooling system that uses the earth as a source of heat in the winter and cooling in the summer. The closed-loop system is expected to deliver up to 30 percent in energy savings over conventional heating and cooling systems, with payback for the additional cost of the system expected in less than 10 years.
  • Insulated Concrete Form (ICF) walls that make up the structure of the building. The system of rigid, insulated foam blocks are reinforced with steel and filled with concrete. ICF walls have a high thermal resistance value, and the insulation they provide reduces heat loss and contributes to further energy savings.
  • Daylight harvesting that utilizes high windows to allow daylight to penetrate deep into classrooms, where the light level is monitored and artificial lights are adjusted as appropriate. This technique requires less artificial light and cooling, minimizing both electrical and cooling demands.
  • Sloped ceilings were incorporated into the design of classrooms to allow natural light to be better reflected and retained.
  • Solar tubes lined with highly reflective material were installed; these tubes lead and transport natural light from roof skylights into interior spaces, which provide more natural lighting and greater energy savings.
  • Triple-glazed glass windowpanes that are separated by an air-filled space to reduce heat transfer and increase insulation efficiency.
  • Occupancy sensors and daylighting controls that detect whether a space is being used and turn lights on or off automatically so energy output can be minimized at all times.

This article originally appeared in the issue of .

About the Authors

Known for his passionate dedication to his work, Jeff Parker, AIA, ALEP, LEED AP, is an expert at helping school districts create future-focused learning environments. His 25+ years of experience include educational visioning, master planning, designing and programming for numerous educational facility types. He says, “From designing spaces that transform the way education takes place, to gathering district stakeholders to help them cast a vision for their new spaces… all of the work I do is done with the purpose of redefining learning.” Contact Jeff at [email protected].

Jim Messner is an associate and the director of Engineering with SHP Leading Design in Cincinnati. He has been involved in school design for nine years.

Featured

  • old university building with visible aging signs, overlaid with digital data graphics like thermal maps, charts, and system icons

    Modernizing Higher Education Infrastructure: Why Smarter Facility Management Is Essential to Protecting Aging Schools

    Schools now have the opportunity to adopt smarter, more strategic approaches to futureproof operations and enhance the on-campus experience.

  • Key Considerations for Office-to-Higher-Education Facility Conversions

    Since the onset of the COVID-19 pandemic, office-to-alternative-use conversions have become a recurring subject of urban development discourse. Office utilization rates across major U.S. cities remain below 50%, with vacancy rates exceeding 27% in San Francisco and 16% in New York. Higher education facilities present programmatic and spatial use cases that align readily with the typical characteristics of commercial office buildings.

  • Image credit: O

    Strategic Campus Assessment: Moving Beyond Reactive Maintenance in Educational Facilities

    While campuses may appear stable on the surface, building systems naturally evolve over time, and proactive assessment can identify developing issues before they become expensive emergencies. The question isn't whether aging educational facilities need attention. It's how institutions can transition from costly reactive maintenance to strategic asset management in a way that protects both budgets and communities.

  • Epson Receives Seven AV Industry Awards

    Projectors manufacturer Epson recently announced that it received multiple awards across the Higher Ed AV Awards, SCN Stellar Service Awards, and InfoComm 2025, according to a news release. The company was recognized for three projectors from its PowerLite L-Series line, accessories, installation process, and its customer support team.

Digital Edition