Chiller Plant Optimization Saves Energy

chiller plant

The Institute for Bioscience and Biotechnology Research on the University of Maryland campus cut energy use an average of 30 percent by optimizing its chiller plant.

When the University of Maryland committed to reducing its energy consumption 20 percent by 2020, James Johnson, director of facilities and lab services, had to find a way to make the 110,000-square-foot Institute for Bioscience and Biotechnology Research (IBBR) more efficient.

The biggest target was the facility’s environmental stabilization plant, “as big an energy pig as there was out there,” says Johnson. The plant was only five years old and had few operational issues, but a consultation with Optimum Energy engineers revealed that optimizing each piece of HVAC equipment individually, as part of the whole system, could increase efficiency considerably.

Johnson also wanted to improve reliability and redundancy. IBBR connects top scientists in interrelated fields to perform world-class bioscience and biotechnology research that leads to real-world advances, and anything that stabilizes lab environments furthers the mission. Plus, Johnson had to ensure the facility’s two 450-ton, variable-speed electric centrifugal water chillers — which provide 3,800 hours of cooling annually — would work at optimal levels regardless of outside conditions, from icy winters to steamy summers.

To accomplish these goals, IBBR converted to an all-variable flow plant, with Optimum Energy’s OptiCx™ Platform as the optimization and control layer. OptimumLOOP ™ software calculates the most efficient operation of the chilled water system and optimizes plant performance in real time, dynamically adapting to changes in load, weather and occupancy to yield the lowest possible kW/ton while maintaining the optimal temperature.

In the first year, output almost doubled — yet IBBR cut energy use by an average of 30 percent.

“Prior to optimizing, in 2014, the plant baseline was about 0.9 kW/ton. By the end of 2015, it was 0.57–0.65 kW/ton,” Johnson says. “I’ve got a plant that is running at absolute maximum efficiency.”

optimumenergyco.com

This article originally appeared in the issue of .

Featured

  • Active Learning Classroom

    Striking a Balance: The Keys to Renovating Science Education Buildings for the 21st Century

    The recent renovation of the Durham Science Center at the University of Nebraska-Omaha (UNO) provides a roadmap for facilities managers tasked with balancing budget constraints, modern pedagogical demands, and long-term sustainability.

  • Ancient Resilience: How Indigenous Intelligence Shapes the 4Roots Education Building

    As climate change intensifies, educational spaces must evolve beyond basic sustainability toward true resilience – we must design environments that can adapt, respond, and thrive amid shifting, and intensifying, climate hazards. Drawing on indigenous wisdom and nature-based strategies, integrating resilient design offers a path to create learning environments that are not only functional but deeply in tune with their natural surroundings.

  • University of Connecticut Upgrades Basketball Facility’s AV Systems

    The University of Connecticut recently partnered with Metinteractive to upgrade the AV systems of the Gampel Pavilion basketball facility on its campus in Mansfield, Conn., according to a news release.

  • Kimball International Debuts Health & Education Experience Center

    Kimball International recently opened a new facility at its corporate headquarters in Jasper, Ind., that will act as a hands-on showroom for a variety of its furniture products and solutions, according to a news release. The 13,000-square-foot Health & Education Experience Center was originally designed by Gensler as the headquarters for Kimball International’s National brand.

Digital Edition