What Advances Have Impacted Battery-Powered Cleaning Equipment?

The most notable recent advancement in battery technology has been the introduction of higher capacity cells. Let me first differentiate between the terms cell and battery. A cell is the basic unit that contains the electrodes, separator, and electrolyte. An easily recognizable example of a cell is an AA battery, which is composed of a single electrochemical cell. The term battery (or battery pack) means a collection of cells, like if you were to add a number of AA batteries together. Higher capacity cells translate to longer battery runtimes.

Higher capacity cells in Lithium Ion batteries have increased battery backpack vacuum runtimes to approximately 75 minutes. Longer runtimes allow cleaners to accomplish more on a single battery charge.

Another advancement is an increase in the number of charge cycles a battery can undergo. Charge cycles indicate the number of times a battery can be completely charged and discharged until the battery fails or starts to lose capacity. We were able to increase the number of charge cycles to 850 in the latest backpack vacuum battery.

Cordless cleaning is already much faster than cleaning with a cord. When used in a cleaning system, a standard backpack vacuum cleans 10,000 square feet in one hour. A cordless backpack vacuum cleans the same area in just 42 minutes.

Janitorial programs can assume that the more battery technology advances, the more efficient battery-powered cleaning equipment will become. Look for improvements in runtime and charge cycles to get the greatest benefit from battery-powered cleaning equipment.

This article originally appeared in the School Planning & Management June 2018 issue of Spaces4Learning.

About the Author

Alex J. Wall is the lead industrial designer with Emerson Tool Company. Wall designs and develops products for the brands RIDGID, WORKSHOP, and ProTeam.

Featured

  • Enjoy Tax and Energy Savings with the Right Ceiling Solutions

    Thanks to recent innovations pairing mineral fiber ceiling panels with phase change material technology (PCM), architects, designers, facility managers, and other key players in construction and renovation projects are re-thinking the role ceilings play in supporting environmental objectives—especially energy savings.

  • Lewis C. Cassidy Elementary School

    Established in 1999, the Education Design Showcase is a vehicle for showing off innovative — yet practical — solutions in planning, design, architecture, and construction. Lewis C. Cassidy Elementary School has been recognized with an EDS 2025 Grand Prize award in the category of New Construction.

  • cutaway view of a modern school building, showing various rooms and zones

    Layering AI into HVAC Systems Shows Reduction in Carbon Emissions

    Heating and cooling systems are just one of the many new ways that AI can be integrated into schools. According to a new study from Schneider Electric's Sustainability Research Institute, AI-powered HVAC systems in schools can lead to significant carbon emissions savings.

  • Embry-Riddle Breaks Ground on New Office Building

    Embry-Riddle Aeronautical University (ERAU) in Daytona Beach, Fla., recently announced that construction has begun on a new office building for its campus Research Park, according to a news release. The university partnered with Hoar Construction on the 34,740-square-foot Center for Aerospace Technology II (CAT II), which will be used for research and lab purposes.

Digital Edition