Wisconsin HS Renovation Features Wire Mesh Infill Panels

Superior High School in Superior, Wisconsin recently completed a $60-million renovation and expansion project which includes classrooms, offices, common area, gymnasium, library media center, and cafeteria space. LHB provided architecture and engineering services and Kraus-Anderson Construction provided construction management services.

The 333,606-square-foot high school includes the addition of railing infill panels made by Banker Wire, a manufacturer of woven and welded wire mesh for architectural and industrial applications.

The 333,606-square-foot high school includes the addition of railing infill panels made by Banker Wire, a manufacturer of woven and welded wire mesh for architectural and industrial applications. The three-story facility specifically utilizes Banker Wire’s M13Z-7 framed in Banker’s Versatile Spine.

The 333,606-square-foot high school includes the addition of railing infill panels made by Banker Wire, a manufacturer of woven and welded wire mesh for architectural and industrial applications.

M13Z-7 is “a rigid cable and intercrimp hybrid wire mesh pattern that maximizes the percent open area by using a set of three intercrimp fill wires.” This provides a durable railing infill panel that offers safety and security while also giving greater visibility between the large stair landings which look down to the common spaces.

The 333,606-square-foot high school includes the addition of railing infill panels made by Banker Wire, a manufacturer of woven and welded wire mesh for architectural and industrial applications.

“LHB selected M13Z-7 to be utilized as an architectural feature material on the grand stairway at Superior High School,” said Anne Porter, Interior Design Project Manager, LHB. “Banker Wire’s M13Z-7 was framed with the company’s Versatile Spine to provide a finished element. These decorative panels were then mounted to the railing structure to provide an industrial aesthetic while also achieving code requirements. Banker Wire was selected due to its product’s durability that required no added finishing and was prefabricated off site.”

Both M13Z-7 wire mesh and Verstile Spine framing were manufactured in stainless steel.

About the Author

Yvonne Marquez is senior editor of Spaces4Learning. She can be reached at [email protected].

Featured

  • textured paper collage shows a school building on fire as a fire truck sprays water into the flames

    Why a Fire Loss Is More than Flames

    We've all seen what fire damage can do to a property, but the types of damage building owners often encounter after a fire loss can exceed expectations. Having full awareness of the different forms of damage properties can sustain helps owners respond faster, reduce continued damage, and get back on the road to recovery in short order.

  • Creating Long-Term Sustainability on College Campuses Through Fair Student Housing

    The quality of student housing can have a significant impact on an individual’s college experience. Today’s higher education institutions face mounting challenges, including declining enrollment, low retention rates between the first and second years, and a rise in student mental health concerns. Thoughtfully designed living spaces can help address these issues by creating environments that promote both academic focus and personal well-being.

  • University of Southern Mississippi Starts Construction on Oyster Hatchery

    The University of Southern Mississippi (USM) recently announced that construction has begun on a new oyster hatchery at its Gulf Coast Research Laboratory (GCRL) Thad Cochran Marine Aquaculture Center (TCMAC) Cedar Point campus in Ocean Springs, Miss., according to a news release.

  • Midland ISD Starts Construction on Two New High Schools

    The Midland Independent School District recently announced that it will break ground on two new high schools in Midland, Texas, according to a news release. The district is partnering with Pfluger Architects, Lee Lewis Construction, and Satterfield & Pontikes to create a total of over 1.5 million square feet for 8,400 students in grades 9–12.