Oregon State University to Move Forward with Wave Energy Project

On Monday, March 1, federal energy regulators gave Oregon State University permission to move forward with an offshore wave energy testing facility.

The PacWave South project is meant to further the development of wave energy technology, which uses the motion of water and currents to produce electricity. Waves off the coast of Oregon have been discovered to have a much higher wave energy generation potential than nearby California or Washington, at least by coastal area. The Oregon Department of Energy estimates that the near-shore waves could eventually be able to generate power for 28 million homes every year.

Wave energy testing facility

The university project must pass a final review period before it can begin construction, but it has already received a license from the Federal Energy Regulatory Commission. “It’s huge,” said Burke Hales, the OSU project’s chief scientist. “It’s the first license of its type to be issued in the United States.”

According to the project’s website, PacWave South will be a wave energy test facility that is grid-connected, accredited, and pre-permitted. Because the entire regulatory process is being done before construction starts, it will be ready to test all expected types of wave energy devices, save millions of dollars, and allow development and optimization of those designs to move more quickly.

The construction will cover two square nautical miles of ocean and include four ocean berths connected to shore by a 7-mile cable route. Infrastructure will include data cables, electric cables, and a grid connection station on land, giving companies easy and immediate access to the wave energy converters. Across its four berths, it will be able to test different technologies simultaneously, and it has space for up to 20 devices.

Oregon State University is developing the project with the U.S. Department of Energy, the State of Oregon, and local stakeholders.

“We hope to be moving forward this summer with groundbreaking for building our shoreside facility,” said Hales. He also said that the underground and sub-surface work for running transmission lines should begin this year, also. They aim to begin installing the test facility’s offshore components in 2022.

About the Author

Matt Jones is senior editor of Spaces4Learning. He can be reached at [email protected].

Featured

  • Elevating Campus Maintenance: How Power Wash Drones are Transforming Educational Facilities

    As today’s campuses grow larger and more architecturally complex, keeping exteriors clean, safe, and inviting has never been tougher. Facilities leaders are under constant pressure to stretch budgets, meet safety standards, and support sustainability goals—all while tackling the stubborn challenge of exterior cleaning.

  • California Middle School Completes Two New Academic Buildings

    Sunnyvale Middle School in Sunnyvale, Calif., recently announced that construction is complete on two new classroom buildings of two stories each, according to a district news release. The new wing will house seventh- and eighth-grade students and is part of a larger campus modernization project.

  • Florida SouthWestern State College, Skanska Partner for Humanities Hall Renovation

    Florida SouthWestern State College (FSW) in Fort Myers, Fla., recently announced that it is partnering with construction firm Skanska to renovate the school’s Humanities Hall, according to a news release.

  • University of Rhode Island, Gilbane Partner for Three New Residence Halls

    The University of Rhode Island in Kingston, R.I., recently announced a public-private partnership with construction development firm Gilbane, according to a news release. Gilbane will soon start construction on three new residence halls with a total of 1,100 beds: two with apartment-style suites in northwest campus, and a reconstruction of the Graduate Village Apartments for graduate students.

Digital Edition