Solar Energy Technology: Photovoltaic Systems

As more school districts across the nation embrace renewable energy technologies, many are now considering the merits of photovoltaic systems. This technology is a form of solar energy that converts sunlight to electricity through the use of photovoltaic cells.

Photovoltaic cells — often referred to as PV cells or solar cells — are devices made of semiconductor materials, such as silicon. When sunlight hits a cell, the light causes the movement of electrons, which is then captured by wires attached to the cell to form a direct electric current. The direct current is converted to alternating current through electrical inverters, and is then available for building use. Several PV cells form a module, and photovoltaic arrays or panels, as might typically be found on a rooftop, consist of several modules.

Like other forms of renewable energy, photovoltaic technology holds much promise for energy-savings while also reflecting a district’s commitment to sustainability and the protection of natural resources. When considering such a step, schools should look first to be sure that a building is as energy-efficient in design and operations as possible. This may include conducting an energy audit and reviewing all of the building systems and equipment.

Next, explore options to help fund renewable energy options, including photovoltaics, such as subsidies, grants and rebates — particularly at the state level. Many states have adopted incentive structures such as Renewable Portfolio Standards and Feed-in Tariffs. Feed-in tariffs require that utilities pay a higher-than-market rate for energy supplied through renewable sources.

School districts may also consider a lease-back arrangement, through which third parties lease roof space to install, operate and maintain photovoltaic panels and enable the district to lock in a utility rate. These agreements are often called Power Purchase Agreements or PPAs. All of these options can help offset system first cost and will likely expand as more states adopt Renewable Portfolio Standards. For information on state, local, utility and federal incentives and policies, visit the Database of State Incentives for Renewables & Efficiency.

Schools are good candidates for the benefits of photovoltaic technology for a number of reasons. The energy demand within schools is highest during the day, when there is the most gain available from solar energy. School buildings generally feature expansive rooftops that will easily accommodate a photovoltaic array. The technology is in keeping with the increasing focus on environmental stewardship and sustainability that our nation’s schools now readily embrace, and many schools are finding that the systems can be used successfully as a hands-on teaching tool. Information on incorporating energy-related resources and activities into a curriculum is available through the National Energy Education Development Project.

Most systems are roof-mounted and require southern exposure with no obstruction from trees or other buildings. Schools will typically have “net-metered” systems that are connected to the utility grid. This allows for use of the utility when solar energy is not available, and for potentially returning power to the grid when the amount of solar energy exceeds building demand. Schools in particular may be able to bank excess power with the utility during weekends and the summer, when building use may be lower, as credit against future energy demand.

One school that has successfully implemented photovoltaic technology is the newly reopened Phelps Architecture, Engineering and Construction High School in Washington, D.C. Phelps, a historic school property that was recently modernized after standing vacant for several years, now features four rooftop photovoltaic arrays. The system allows for peak shaving, which reduces the building’s peak electrical demand and is monitored regularly by students as part of the school’s curriculum.

Terry Liette is a principal and the executive director of engineering with Fanning/Howey Associates, Inc.
Ian Hadden is client liaison for engineering and sustainable design for the firm.



About the Authors

Terry Liette, PE, LEED-AP, [email protected], is chief engineering officer for Fanning Howey, a national leader in the design of learning environments.


Featured

  • California District Starts Construction on New Robotics Facility

    The Fremont Union High School District (FUHSD) near Silicon Valley, Calif., recently announced that construction has begun on a new Robotics Facility on the campus of Cupertino High School, according to a news release. The 14,500-square-foot facility will serve students at high schools across the entire district, providing purpose-built spaces for student creativity and collaboration.

  • University of Kansas Opens $400M Football Stadium Reconstruction

    The University of Kansas in Lawrence, Kan., recently announced that the $400-million reconstruction of David Booth Kansas Memorial Stadium is complete in time for the 2025 football season, according to a news release. The university partnered with Turner Construction Company on the project.

  • FAU Starts Construction on Holocaust and Jewish Studies Building

    Florida Atlantic University recently began construction on a new academic building for its campus in Boca Raton, Fla., according to university news. The Kurt and Marilyn Wallach Holocaust and Jewish Studies Building will stand two stories, measure in at 22,000 square feet, and play home to the university’s Holocaust education and Jewish studies programs.

  • Creating a First and Lasting Impression with Thoughtful, Sustainable Design

    Clemson University’s Nieri Family Alumni and Visitors Center serves as the new front door to campus, anchoring the Tiger experience through each step in the student journey.

Digital Edition