Duke University: Nicholas School of the Environment

Duke University: Nicholas School of the Environment

PHOTOS © WARREN JAGGER PHOTOGRAPHY

Environment Hall on the campus of Duke University in Durham, NC, designed by Payette, is a long narrow bar building nestled in among existing campus buildings, giving virtually all program spaces access to natural light and views. A subtle bend in the building’s geometry mitigates multiple campus grids, signifies entry and is used to create landscape spaces that are at once cradled and expansive. The building’s structural grid and floor-to-floor heights align with the adjacent Levine Science Research Center, creating a dialogue between old and new across a protected orchard while preserving the flexibility of a future physical link between buildings.

The project integrates low-energy, sustainable building systems aimed at reducing environmental impact and serving as teaching tools for the School and its broader community. A rooftop solar photovoltaic trellis generates 60,000 kWh of electricity annually and is complemented with a solar thermal panel system to satisfy domestic hot water needs. The trellis shades a garden roof, which functions as a pair of informal outdoor classrooms.

A low-ambient, high-task lighting strategy with vacancy sensors and daylight harvesting reduces lighting energy. Building-wide, a dashboard monitoring system monitors and communicates indoor and outdoor environmental conditions, as well as indoor energy usage, allowing occupants to make near real-time adjustments to reduce energy consumption.

The building’s primary organizing element is its network of thermal corridors along the south façade, which utilize a relaxed temperature strategy to insulate interior spaces from direct solar gain. Coupled with tuned horizontal sunshade elements and operable windows providing natural ventilation, the thermal corridors significantly reduce the building’s overall energy consumption.

A high-performance curtainwall with a varying ceramic-fritted glazing and vertical fin sunshades minimizes heat gain. At the ends of the building, these primary façade systems wrap the corner and are stitched together by expressive concrete stairs, a unique exterior experience made possible by the site’s temperate climate.

This article originally appeared in the College Planning & Management September 2016 issue of Spaces4Learning.

Featured

  • Embry-Riddle Breaks Ground on New Office Building

    Embry-Riddle Aeronautical University (ERAU) in Daytona Beach, Fla., recently announced that construction has begun on a new office building for its campus Research Park, according to a news release. The university partnered with Hoar Construction on the 34,740-square-foot Center for Aerospace Technology II (CAT II), which will be used for research and lab purposes.

  • Fellowes Launches New 3D Modular, Product Configurators

    Contract interiors and architectural solutions provider Fellowes recently announced the launch of new 3D modular and product configurators for several of its product lines, according to a news release. The new products offer SIF file integration and pricing for the Volo, Markerboards, Sena, and Rising product lines in connection with 3D Cloud, which provides 3D product visualization and 3D digital asset management.

  • Spaces4Learning Announces Winners of 2025 Product Awards

    Spaces4Learning has just announced the winners of the 2025 Product Awards! The award program recognizes innovation and excellence in products that enhance learning environments in K–12 schools and institutions of higher education.

  • Average Annual Number of Tornadoes per State

    New Tornado Wind Load Design Criteria in IBC Offer Improvements to Life Safety

    For the first time in U.S. building code history, the 2024 International Building Code (IBC) includes tornado wind load design criteria, marking a significant advancement in life-safety provisions.

Digital Edition