Oregon State University to Move Forward with Wave Energy Project

On Monday, March 1, federal energy regulators gave Oregon State University permission to move forward with an offshore wave energy testing facility.

The PacWave South project is meant to further the development of wave energy technology, which uses the motion of water and currents to produce electricity. Waves off the coast of Oregon have been discovered to have a much higher wave energy generation potential than nearby California or Washington, at least by coastal area. The Oregon Department of Energy estimates that the near-shore waves could eventually be able to generate power for 28 million homes every year.

Wave energy testing facility

The university project must pass a final review period before it can begin construction, but it has already received a license from the Federal Energy Regulatory Commission. “It’s huge,” said Burke Hales, the OSU project’s chief scientist. “It’s the first license of its type to be issued in the United States.”

According to the project’s website, PacWave South will be a wave energy test facility that is grid-connected, accredited, and pre-permitted. Because the entire regulatory process is being done before construction starts, it will be ready to test all expected types of wave energy devices, save millions of dollars, and allow development and optimization of those designs to move more quickly.

The construction will cover two square nautical miles of ocean and include four ocean berths connected to shore by a 7-mile cable route. Infrastructure will include data cables, electric cables, and a grid connection station on land, giving companies easy and immediate access to the wave energy converters. Across its four berths, it will be able to test different technologies simultaneously, and it has space for up to 20 devices.

Oregon State University is developing the project with the U.S. Department of Energy, the State of Oregon, and local stakeholders.

“We hope to be moving forward this summer with groundbreaking for building our shoreside facility,” said Hales. He also said that the underground and sub-surface work for running transmission lines should begin this year, also. They aim to begin installing the test facility’s offshore components in 2022.

About the Author

Matt Jones is senior editor of Spaces4Learning. He can be reached at [email protected].

Featured

  • University of Utah Launches Utah 360 App

    The University of Utah in Salt Lake City, Utah, recently announced that it has partnered with digital engagement hub Pathify to launch a new app for the university community, according to a news release.

  • KI Wall Demonstrates New Solutions at NeoCon 2025

    KI Wall attended NeoCon 2025 in Chicago, Ill., last month to showcase its new architectural wall systems and collaborations, according to a news release. Its customizable, design-forward wall solutions are intended to support creativity in work, education, and healthcare environments.

  • Designing Learning Spaces that Support Student Mental Health and Wellness

    In today’s education landscape, schools are more than just centers for learning; they are integral to the holistic development and well-being of students. The global pandemic underscored the importance of addressing mental health in schools, as productivity dropped, stress levels rose and students faced challenges managing emotions.

  • ClassVR headsets

    Avantis Education Revamps Hardware for ClassVR Solution

    Avantis Education recently announced the launch of two new headsets for its flagship educational VR/AR solution, ClassVR. According to a news release, the Xcelerate and Xplorer headsets expand the company’s offerings into higher education while continuing to meet the evolving needs of K–12 users.

Digital Edition