Wiring Strategies for Wireless Success

More than ever before, colleges and universities are turning to technology to improve the quality and effectiveness of classroom experiences and the operational efficiency of their facilities. From digital learning initiatives such as 1:1 device programs and bring-your-own-device (BYOD), to physical projects like security and building system sensors, many technologies are going wireless. And, the Internet of Things (IoT) promises even more options and opportunities in the near future.

With the focus on wireless, it’s easy to forget that a wired infrastructure is the foundation that makes wireless possible. Ever increasing wireless demands and wireless access speeds require that IT and facilities managers pay attention to the cabling infrastructure behind the WAPs.

Wireless Triple Threat

What’s driving the need for wireless on campus? Three primary factors are at play: student demand, technology in the classroom and the Internet of Things (IoT).

Student Demand: Students are accustomed to always having wireless at their fingertips. In fact, some students entering college today may not even remember a time when they didn’t have wireless access at home. Wireless access today is an expectation; not a “nice to have.” For those living in on-campus housing, it is even more critical, as students are connecting as many as seven or eight wireless devices in their rooms.

Technology as a Learning Tool: Technology is a crucial part of the learning process. Streaming videos, online discussion platforms, video conferencing, distance learning, research… the list of technology-driven tools is lengthy, and growing all the time.

The Internet of Things: The IoT is adding new mobilityenabled technologies at a rapid pace. Building sensors that detect occupancy and deliver real-time adjustments to things like lighting and ventilation provide improved efficiencies and lower operating costs.

Wireless is not Wireless

The benefits of wireless technology in education are wellestablished, but the cabling infrastructure that sits behind the wireless networks must be robust and designed to optimize the performance of both the cabling and the access points for years to come.

Cabling infrastructure is designed to be replaced on a 15- to 20-year cycle. In comparison, networking equipment likely will be replaced about every three to five years (and is a far larger investment). The bad news is that WAP speeds have been increasing far faster than copper cabling speeds, with data rates only expected to climb.

The best way to ensure that your cabling infrastructure will meet your wireless needs is to install Category 6A cabling. Category 6A offers the highest data rates, at 10GBASE-T, with the best thermal performance, which is critical when powering access points with Power over Ethernet.

An alternative to Category 6A is NBASE-T, which provides additional bandwidth using existing Category 5e and Category 6 infrastructure. The technology isn’t fail-proof, but with attention to bundling size and channel length, it can provide sufficient bandwidth until the infrastructure can be upgraded to Category 6A.

Conclusion

With the wireless demand continuing to escalate, the demand for high-performance solutions continues to grow as well. A modernized cabling infrastructure strategy built around Category 6A is fundamental to meeting new classroom needs and operational goals.

Answer the demands with the latest cabling innovations and architectures. Deploying the appropriate options for your campus will contribute to efficiencies, reduced costs and student satisfaction.

To find out more about this important topic you can view the On-Demand webinar:

Best Practices in Structured Cabling to Support Wireless Technology in Higher Education

This article originally appeared in the issue of .

Featured

  • All Surfaces Hires New Commercial Business Development Specification Manager

    Flooring solutions provider All Surfaces recently announced that it has hired industry veteran Mechelle Bliss as its new Commercial Business Development Specification Manager, according to a news release. In her new role, she’ll be responsible for expanding the organization’s hold in various commercial markets, as well as strengthening relationships with existing clients.

  • Rice University to Build New Student Life Complex

    Rice University in Houston, Texas, recently announced that a groundbreaking ceremony for the upcoming Moody Center Complex for Student Life (MCCSL) will take place on May 8, 2025, according to a university news release. The 75,000-square-foot facility was designed by architecture firm Olson Kundig with Page serving as executive architect, and it has an estimated completion date of fall 2027.

  • Spaces4Learning Launches 2025 New Product Awards

    Spaces4Learning is now accepting entries for the 2025 New Product Awards! The program’s goal is to honor the outstanding product development achievements of manufacturers and suppliers whose products and services are particularly noteworthy in helping to improve K–12 and Higher Education learning environments.

  • Clemson to Launch North America’s Largest College Campus Smart Parking Program

    Clemson University in Clemson, S.C., recently announced a partnership with smart parking and curbside management solutions provider eleven-x to launch a smart parking initiative for its population of 29,000 students and faculty, according to a news release.