Chiller Plant Optimization Saves Energy

chiller plant

The Institute for Bioscience and Biotechnology Research on the University of Maryland campus cut energy use an average of 30 percent by optimizing its chiller plant.

When the University of Maryland committed to reducing its energy consumption 20 percent by 2020, James Johnson, director of facilities and lab services, had to find a way to make the 110,000-square-foot Institute for Bioscience and Biotechnology Research (IBBR) more efficient.

The biggest target was the facility’s environmental stabilization plant, “as big an energy pig as there was out there,” says Johnson. The plant was only five years old and had few operational issues, but a consultation with Optimum Energy engineers revealed that optimizing each piece of HVAC equipment individually, as part of the whole system, could increase efficiency considerably.

Johnson also wanted to improve reliability and redundancy. IBBR connects top scientists in interrelated fields to perform world-class bioscience and biotechnology research that leads to real-world advances, and anything that stabilizes lab environments furthers the mission. Plus, Johnson had to ensure the facility’s two 450-ton, variable-speed electric centrifugal water chillers — which provide 3,800 hours of cooling annually — would work at optimal levels regardless of outside conditions, from icy winters to steamy summers.

To accomplish these goals, IBBR converted to an all-variable flow plant, with Optimum Energy’s OptiCx™ Platform as the optimization and control layer. OptimumLOOP ™ software calculates the most efficient operation of the chilled water system and optimizes plant performance in real time, dynamically adapting to changes in load, weather and occupancy to yield the lowest possible kW/ton while maintaining the optimal temperature.

In the first year, output almost doubled — yet IBBR cut energy use by an average of 30 percent.

“Prior to optimizing, in 2014, the plant baseline was about 0.9 kW/ton. By the end of 2015, it was 0.57–0.65 kW/ton,” Johnson says. “I’ve got a plant that is running at absolute maximum efficiency.”

optimumenergyco.com

This article originally appeared in the issue of .

Featured

  • Colorado State University Global, SCTE Launch Online Certificate Program

    Colorado State University Global (CSU Global), based in Denver, Colo., recently announced a partnership with CableLabs subsidiary the Society of Cable Telecommunications Engineers (SCTE) to launch an online certificate training program for broadband professionals, according to a news release.

  • ClassVR headsets

    Avantis Education Revamps Hardware for ClassVR Solution

    Avantis Education recently announced the launch of two new headsets for its flagship educational VR/AR solution, ClassVR. According to a news release, the Xcelerate and Xplorer headsets expand the company’s offerings into higher education while continuing to meet the evolving needs of K–12 users.

  • textured paper collage shows a school building on fire as a fire truck sprays water into the flames

    Why a Fire Loss Is More than Flames

    We've all seen what fire damage can do to a property, but the types of damage building owners often encounter after a fire loss can exceed expectations. Having full awareness of the different forms of damage properties can sustain helps owners respond faster, reduce continued damage, and get back on the road to recovery in short order.

  • abstract representation of hybrid learning environment

    The Permanence of Change: Why Hybrid Is the New Baseline

    Hybrid learning is here to stay, and it's reshaping how campus spaces function.

Digital Edition