Chiller Plant Optimization Saves Energy

chiller plant

The Institute for Bioscience and Biotechnology Research on the University of Maryland campus cut energy use an average of 30 percent by optimizing its chiller plant.

When the University of Maryland committed to reducing its energy consumption 20 percent by 2020, James Johnson, director of facilities and lab services, had to find a way to make the 110,000-square-foot Institute for Bioscience and Biotechnology Research (IBBR) more efficient.

The biggest target was the facility’s environmental stabilization plant, “as big an energy pig as there was out there,” says Johnson. The plant was only five years old and had few operational issues, but a consultation with Optimum Energy engineers revealed that optimizing each piece of HVAC equipment individually, as part of the whole system, could increase efficiency considerably.

Johnson also wanted to improve reliability and redundancy. IBBR connects top scientists in interrelated fields to perform world-class bioscience and biotechnology research that leads to real-world advances, and anything that stabilizes lab environments furthers the mission. Plus, Johnson had to ensure the facility’s two 450-ton, variable-speed electric centrifugal water chillers — which provide 3,800 hours of cooling annually — would work at optimal levels regardless of outside conditions, from icy winters to steamy summers.

To accomplish these goals, IBBR converted to an all-variable flow plant, with Optimum Energy’s OptiCx™ Platform as the optimization and control layer. OptimumLOOP ™ software calculates the most efficient operation of the chilled water system and optimizes plant performance in real time, dynamically adapting to changes in load, weather and occupancy to yield the lowest possible kW/ton while maintaining the optimal temperature.

In the first year, output almost doubled — yet IBBR cut energy use by an average of 30 percent.

“Prior to optimizing, in 2014, the plant baseline was about 0.9 kW/ton. By the end of 2015, it was 0.57–0.65 kW/ton,” Johnson says. “I’ve got a plant that is running at absolute maximum efficiency.”

optimumenergyco.com

This article originally appeared in the issue of .

Featured

  • Niles West High School Natatorium Renovation

    Natatoriums are highly specialized spaces, and luminaires in this setting face several unique challenges. Perhaps the most significant is corrosion, which is exacerbated by high indoor humidity, condensation, and pool chemicals, often resulting in material degradation in luminaires not certified to perform in corrosive environments.

  • Photo credit: Elkus Manfredi Architects

    University of Virginia Selects Design-Build Team for New Residential Complex

    The University of Virginia in Charlottesville, Va., recently announced that it has selected a design-build team for a new upper-class residential development on campus, according to a news release. Capstone Development Partners—in partnership with Elkus Manfredi Architects and the Hoar Construction/Hourigan construction team—will move forward with the three-building, 310,000-square-foot housing facility.

  • restroom sinks

    CSU Dominguez Hills Standardizes Plumbing to Improve Restroom Maintenance and Efficiency

    At California State University, Dominguez Hills, facilities leaders have taken steps to standardize restroom fixtures as part of a broader effort to improve maintenance efficiency and control long-term costs.

  • Round Rock ISD Completes New Early College High School

    Round Rock ISD near Austin, Texas, recently announced that construction is complete on a new, 46,500-square-foot campus for Early College High School, according to a news release. The new facility will allow the school’s students and staff to move from portables into a permanent building and increase its enrollment to 500.

Digital Edition