How do we specify glass railings?

Glass design and engineering analysis can be inconsistent across projects. There are several possible reasons for this including the treatment of guardrails as a product rather than an engineered structure, general inexperience with glass as an engineered material, and limited access to glass design software in the U.S.

To ensure you have all the pertinent details, ask suppliers to provide you with a comprehensive proposal, including detailed takeoffs with specific inclusions or exclusions for each railing style within the project scope. These details should include aspects such as finish, linear footage, structural attachment, and makeup. Additionally, request a submittal package that includes 3D renderings based on the architectural and structural specifics for the project.

High-definition surveying (HDS) technology offers tremendous benefits over conventional surveying. It allows for the capture of thousands of critical measurements with precision accuracy, thereby significantly reducing the need for fabrication rework. It also offers a much faster track to the manufacturing process by eliminating the risk of human error and saving weeks of manual field measuring.

Regardless of the method selected for analysis, there are two key principles that should be considered when specifying glass railing: the elastic properties of laminate interlayers (and how they change with temperature and load duration), and understanding that local stresses—e.g., contact materials, support size, and hole size—are critical. In light of these varying factors, it’s recommended that a good finite element program be used to accurately determine glass stresses instead of any manual analysis.

Glass analysis is the most critical aspect of specifying point-supported glass due to life-safety factors. It’s essential that those who have a stake in a project understand this and take appropriate measures to ensure that building code requirements are met.

This article originally appeared in the College Planning & Management June 2019 issue of Spaces4Learning.

About the Author

Dan Stachel is vice president of Trex Commercial Products (www.trexcommercial.com).

Featured

  • Massachusetts Charter School Opens New Academic Building

    The Advanced Math and Science Academy Charter School (AMSA) in Marlborough, Mass., recently held a ribbon-cutting ceremony for a new academic building, according to a news release. The 17,000-square-foot space will serve as a classroom and science lab building for the student population of almost a thousand in grades 6–12.

  • Minnesota High School Completes $226M Addition, Renovation Project

    White Bear Lake Area High School – North Campus in White Bear Lake, Minn., recently announced the completion of a $226-million renovation and addition project, according to a news release. The district partnered with Kraus-Anderson for the project’s construction, which involved creating a single high-school site for the White Bear Lake Area School District.

  • Studio G Announces Completion of New Massachusetts Elementary School

    The Groton-Dunstable Regional School District in Groton, Mass., recently announced the completion of a new elementary school, according to a news release. Florence Roche Elementary School measures in at 110,000 square feet and has the capacity for 645 students in grades K–4.

  • diverse, simplified human figures in various colors seated around a curved table, with floating icons like light bulbs and speech bubbles above them

    Spaces4Learning Relaunches Advisory Board, Announces 12 Members

    Spaces4Learning is pleased to announce the relaunch of its advisory board and the introduction of its 12 distinguished members.