How do we specify glass railings?

Glass design and engineering analysis can be inconsistent across projects. There are several possible reasons for this including the treatment of guardrails as a product rather than an engineered structure, general inexperience with glass as an engineered material, and limited access to glass design software in the U.S.

To ensure you have all the pertinent details, ask suppliers to provide you with a comprehensive proposal, including detailed takeoffs with specific inclusions or exclusions for each railing style within the project scope. These details should include aspects such as finish, linear footage, structural attachment, and makeup. Additionally, request a submittal package that includes 3D renderings based on the architectural and structural specifics for the project.

High-definition surveying (HDS) technology offers tremendous benefits over conventional surveying. It allows for the capture of thousands of critical measurements with precision accuracy, thereby significantly reducing the need for fabrication rework. It also offers a much faster track to the manufacturing process by eliminating the risk of human error and saving weeks of manual field measuring.

Regardless of the method selected for analysis, there are two key principles that should be considered when specifying glass railing: the elastic properties of laminate interlayers (and how they change with temperature and load duration), and understanding that local stresses—e.g., contact materials, support size, and hole size—are critical. In light of these varying factors, it’s recommended that a good finite element program be used to accurately determine glass stresses instead of any manual analysis.

Glass analysis is the most critical aspect of specifying point-supported glass due to life-safety factors. It’s essential that those who have a stake in a project understand this and take appropriate measures to ensure that building code requirements are met.

This article originally appeared in the College Planning & Management June 2019 issue of Spaces4Learning.

About the Author

Dan Stachel is vice president of Trex Commercial Products (www.trexcommercial.com).

Featured

  • Fayetteville State University Opens New Residence Hall

    Fayetteville State University (FSU) in Fayetteville, N.C., recently completed construction on a new $50-million residence hall, according to a news release. The university partnered with KWK/Jenkins • Peer Architects on the design of Bronco Pride Hall.

  • Beyond Four Walls

    Operable glass walls provide a dynamic solution for educational spaces. They align with today’s evolving teaching methods and adapt to the needs of modern learners. Beyond the functional versatility, movable glass walls offer clean, contemporary aesthetics, slim and unobtrusive profiles, and versatile configurations that cater to the evolving needs of students and educators alike.

  • Texas K–12 District to Build New Elementary, High Schools

    The High Island Independent School District on the Bolivar Peninsula in Southeast Texas recently announced that construction on a new elementary school and a new high school will begin in January 2026, according to local news. Funding will come from a $27.9-million bond passed in May 2025.

  • Embry-Riddle Breaks Ground on New Office Building

    Embry-Riddle Aeronautical University (ERAU) in Daytona Beach, Fla., recently announced that construction has begun on a new office building for its campus Research Park, according to a news release. The university partnered with Hoar Construction on the 34,740-square-foot Center for Aerospace Technology II (CAT II), which will be used for research and lab purposes.

Digital Edition