U Toledo Developing Solar Sheets to Generate Power in Space

The University of Toledo just received a five-year, $12.5 million grant from the U.S. Air Force to develop flexible solar cell sheets for space. The photovoltaic energy sheets will be used to collect solar energy for powering Earth-based receivers or other orbital or aerial instrumentation, such as communications satellites.

Physicists at the institution will develop flexible solar cell sheets, each about the size of a piece of paper, which can be assembled and connected into considerably larger structures. A single space-based array could use tens of millions of the sheets and extend to sizes as large as a square mile. (U Toledo won't be engineering the arrays, however.) An array of that size is projected to be able to generate about 800 megawatts of electrical power, enough to power about 130,000 houses on earth for the day.

Professor Randall Ellingson receives grant from U.S. Air Force
Randall Ellingson, a professor of physics, received a $12.5 million grant from the U.S. Air Force to develop space-based solar energy sheets for transmitting clean power back to Earth or satellites in orbit.
Source: University of Toledo

The researchers are building tandem solar cells—two cells stacked on top of each other that are more efficient for harvesting the sun's spectrum—on ultra-thin, flexible supporting materials. The team will "sandwich" various groupings of solar cells, including perovskites, silicon, cadmium telluride and copper indium gallium selenide, to see what the optimal combination is. The team will also investigate the use of lightweight, flexible supporting material—thin ceramic, plastics and glass—to create the large solar cell sheets. According to the physicists, those materials need to be "resilient, ultra-thin and tolerant to high and low temperatures."

"With 37% stronger sunlight above the atmosphere than on a typical sunny day here on Earth's surface, orbital solar arrays offer a critical opportunity to harness renewable energy, achieve sustainability goals and provide strategic power for a wide range of orbital and airborne technologies," said Randall Ellingson, a professor in the university's Department of Physics and Astronomy, member of the school's Wright Center for Photovoltaics Innovation and Commercialization and leader of the project, in a statement.

This isn't the first time Ellingson has worked with the Air Force on space projects. In 2019, his team received $7.4 million to develop solar technology to power space vehicles using sunlight.

About the Author

Dian Schaffhauser is a former senior contributing editor for 1105 Media's education publications THE Journal, Campus Technology and Spaces4Learning.

Featured

  • California High School Starts Construction on STEAM, Music Buildings

    Tamalpais High School, part of the Tamalpais Union High School District, recently broke ground on two new major facilities for its campus in Mill Valley, Calif., according to a news release. The district is partnering with Quattrocchi Kwok Architects (QKA) and Lathrop Construction Associates for the Science Technology, Engineering, Arts, and Mathematics (STEAM) and Music Buildings, both replacing their outdated counterparts.

  • K–12 Safety Trends Report Reveals Reliance on Training, Technology

    Wearable safety technology provider CENTEGIX recently released its 2025 School Safety Trends Report, according to a news release. The report is based on more than 265,000 incidents during the 2024–25 school year as reported through the CENTEGIX Safety Platform, used by more than 800 school districts across the U.S.

  • How One School Reimagined Learning Spaces—and What Others Can Learn

    When Collegedale Academy, a PreK–8 school outside Chattanooga, Tenn., needed a new elementary building, we faced the choice that many school leaders eventually confront: repair an aging facility or reimagine what learning spaces could be. Our historic elementary school held decades of memories for families, including some who had once walked its halls as children themselves. But years of wear and the need for costly repairs made it clear that investing in the old building would only patch the problems rather than solve them.

  • A university

    Breaking Higher Education's Billion-Dollar Backlog Problem

    Strategic mechanical system design can transform campus maintenance backlogs. Here's how.

Digital Edition