University of Maryland Breaks Ground on New Chemistry Building

On the campus of the University of Maryland in College Park, Md., officials gathered recently to break ground on a new 105,000-square-foot chemistry building. The facility will serve the Department of Chemistry and Biochemistry and provide space for research and innovations in fields like advanced materials, energy storage, nanoscience, quantum chemistry and drug discovery and delivery.

“Today, we break ground on a research building that will accelerate innovation for the University of Maryland’s Department of Chemistry and Biochemistry,” said university president Darryll J. Pines. “Thanks to investment by the state of Maryland and generous partners, this new facility gives us a competitive edge at a critical time to tackle grand challenges with leading technologies.”

The facility will feature amenities like 34 research labs, two core research facilities, and about 13,000 square feet of collaboration space. It will also have a grand colloquia and events venue for conferences and celebrations, as well as 12 smaller meeting and huddle rooms. The project is being funded through the state of Maryland’s capital budget.

“This new building will expand our legacy of leadership in the chemical sciences,” said Amitabh Varshney, dean of the university’s College of Computer, Mathematical, and Natural Sciences. “In this new chemistry building, our faculty and students will create nanomaterials for next-generation biosensors, fabrics and batteries; develop biomolecules functionalized to treat human diseases; and explore the chemistry required for quantum devices.”

The new building comes with a price tag of $116 million, $105 million of which is coming from the state, Pines said at the groundbreaking ceremony. It was designed by architectural firm Ballinger, and construction will be done by the Whiting-Turner Contracting Company. The building is scheduled to open to students in 2023.

“We aim to be a Top 10 chemistry and biochemistry program, and this new building is the physical catalyst necessary to help us achieve that goal,” said Department of Chemistry and Biochemistry Professor and Chair Janice Reutt-Robey.

About the Author

Matt Jones is senior editor of Spaces4Learning. He can be reached at [email protected].

Featured

  • Fayetteville State University Opens New Residence Hall

    Fayetteville State University (FSU) in Fayetteville, N.C., recently completed construction on a new $50-million residence hall, according to a news release. The university partnered with KWK/Jenkins • Peer Architects on the design of Bronco Pride Hall.

  • textured paper collage shows a school building on fire as a fire truck sprays water into the flames

    Why a Fire Loss Is More than Flames

    We've all seen what fire damage can do to a property, but the types of damage building owners often encounter after a fire loss can exceed expectations. Having full awareness of the different forms of damage properties can sustain helps owners respond faster, reduce continued damage, and get back on the road to recovery in short order.

  • sapling sprouting from a cracked stone

    Lessons in Resilience: Disaster Recovery in Our Schools

    Facility managers play a pivotal role in how well a school weathers and recovers from a crisis. Whether it's a hurricane, a flood, a tornado, or a man-made event, preparation determines resilience.

  • Image credit: O

    Strategic Campus Assessment: Moving Beyond Reactive Maintenance in Educational Facilities

    While campuses may appear stable on the surface, building systems naturally evolve over time, and proactive assessment can identify developing issues before they become expensive emergencies. The question isn't whether aging educational facilities need attention. It's how institutions can transition from costly reactive maintenance to strategic asset management in a way that protects both budgets and communities.

Digital Edition