University of Washington

Molecular Engineering & Sciences Building

University of Washington

PHOTOS © BENJAMIN BENSCHNEIDER

The University of Washington in Seattle desired a facility to accommodate growth in molecular engineering; respond to the evolving interdisciplinary nature of teaching and research; and fit within an area of campus that is home to recently revitalized facilities, as well as traditional campus architecture. Research within the building will lead to new discoveries with beneficial implications for major societal challenges ranging from energy, sustainability, and the environment to information technology to affordable and effective healthcare.

Designed by ZGF Architects LLP, the project provides the necessary research laboratories and faculty offices to bring together students and researchers across science and engineering disciplines, which were previously dispersed throughout the campus. Associated molecular and nanotechnology instrumentation is also consolidated into the new facility to provide greater synergy and enhanced research capabilities. The integrated design provides tight adjacency between offices and research laboratories to encourage and facilitate collaboration between various disciplines. A further goal was for the facility to support the university’s commitment to advancing environmental stewardship by targeting new energy-saving strategies in a technically challenging laboratory environment.

The performance-driven design encompasses technical systems integration, while simultaneously addressing the environmental impacts of the technologies.

The 90,000-square-foot, five-story building, providing light-filled above-grade office, laboratory and common spaces, is the foundation for the master planned 160,000-squarefoot two-phase project. As part of Phase 1, ground and basement level instrumentation labs meet ultra-low vibration and electromagnetic interference requirements, and allow all regularly occupied research labs and offices to take advantage of daylight and views.

The five-story building provides the optimum program for the site. The narrow building footprint supports natural ventilation and daylighting strategies. Daylight from N, S, E and W compass coordinates improves user experience, encourages interaction, and provides transparency and connectivity between laboratory and office researchers on all four floors of regularly occupied building space.

This article originally appeared in the College Planning & Management December 2013 issue of Spaces4Learning.

Featured

  • Beyond Four Walls

    Operable glass walls provide a dynamic solution for educational spaces. They align with today’s evolving teaching methods and adapt to the needs of modern learners. Beyond the functional versatility, movable glass walls offer clean, contemporary aesthetics, slim and unobtrusive profiles, and versatile configurations that cater to the evolving needs of students and educators alike.

  • UNT Dallas Holds Ribbon-Cutting Ceremony for $100M STEM Building

    The University of North Texas at Dallas in Dallas, Texas, recently celebrated the opening of its new, $100-million STEM Building, according to local news. The ceremony on Dec. 2 preceded the first day of classes in the facility on Jan. 12, 2026.

  • Countway Library at Harvard Medical School

    From Shadows to Sanctuary: The Transformation of Light at Countway Library

    The renovation of Countway Library at Harvard Medical School demonstrates how biophilic design and advanced lighting strategies transformed a formerly dark, insular space into a vibrant, welcoming hub that supports wellness, learning, and community engagement.

  • Spaces4Learning Launches 2026 Education Design Showcase Awards

    Spaces4Learning has opened submissions for the 2026 Education Design Showcase! The awards program launched in 1999 with the goal of celebrating innovative, practical solutions in the planning, design, and construction of K–12 and higher-education facilities. EDS recognizes new developments that help achieve optimal learning environments, as well as the architecture firms that brought the ideas to life.

Digital Edition