Fuel Cells Energize a University

FuelCell Energy

FuelCell Energy was able to generate clean energy and greatly reduce costs for CCSU and Connecticut taxpayers.

As a college committed to environmental sustainability, Central Connecticut State University (CCSU) has adopted bold clean-energy practices that are making other schools take notice. For its nearly 10,000 undergraduate students, CCSU sought a continuous on-site power solution that reduced its carbon footprint and helped it achieve aggressive Climate Action Plan goals. In addition, CCSU was determined to find ways to strengthen its energy security and independence in ways that would not only reduce energy costs, but also provide a level of cost certainty into the future.

A rigorous RFP process revealed an affordable, highly efficient and emission-reducing option: a stationary fuel cell power plant. Fuel cell power generation was an inspiring new concept for the CCSU leadership team, one that ultimately electrified the campus’ electric grid and in turn, the university community.

CCSU chose a fuel cell power plant manufactured by FuelCell Energy, a Danbury, CT-based supplier of megawatt-class fuel cell power plants for on-site and electric grid support applications. The company installed a 1.4 megawatt DFC1500® fuel cell power plant on CCSU’s New Britain campus in only four months.

FuelCell Energy’s highly efficient, stationary fuel cell power plants generate electricity and usable heat energy continuously via an electrochemical process that is virtually absent of the pollutants that cause smog, acid rain, or that can aggravate asthma (particulates). Quiet and easily sited, they have proven to be an ideal solution for universities like CCSU.

“By providing both electricity and steam in such a clean and efficient manner, the fuel cell plant decreases our carbon emissions,” says Dr. Jack Miller, CCSU president. “CCSU’s power costs are annually reduced by an estimated $100,000 — a savings for both the university and Connecticut taxpayers,” he emphasizes.

www.FuelCellEnergy.com

This article originally appeared in the issue of .

Featured

  • Abstract tech network data connections with orange, blue glowing dots, lines

    3 Trends for Higher Education to Stay Ahead of in 2026

    As universities enter the new year, the question is no longer whether digital transformation is necessary, but how quickly institutions can convert technological potential into strategic advantage.

  • Beyond Four Walls

    Operable glass walls provide a dynamic solution for educational spaces. They align with today’s evolving teaching methods and adapt to the needs of modern learners. Beyond the functional versatility, movable glass walls offer clean, contemporary aesthetics, slim and unobtrusive profiles, and versatile configurations that cater to the evolving needs of students and educators alike.

  • classroom with crystal ball on top of a desk

    Call for Opinions: Spaces4Learning 2026 Predictions for Educational Facilities

    As 2025 winds to a close, the Spaces4Learning staff is asking its readers—school administrators, architects, engineers, facilities managers, builders, superintendents, designers, vendors, and more—to send us their predictions for educational facilities in 2026.

  • concentric silhouettes of a human head

    How Physical Space Shapes the Mind: Designing for Better Learning Outcomes

    Research in environmental psychology and neuroscience increasingly suggests that the way a room is designed can influence memory, focus, or even a student's sense of belonging.

Digital Edition