Does Using An Orbital Scrubber Make A Difference?

Education facility managers and administrators struggle to balance limited operational budgets and a need to maintain clean and healthy schools for their students and faculty.

Subject to continuous foot traffic, school floors become soiled quickly and that dirt is tracked throughout the building. Soiled floors not only detract from the overall aesthetics of the facility, but slick dirt and grime can cause slip and fall hazards while dust and allergens adversely impact indoor air quality (IAQ).

Numerous studies have identified poor IAQ as a key contributor to the development of asthma in young people and the spread of other illnesses among students and faculty. These illnesses lead to increased absenteeism, which is directly linked to poorer classroom performance.

Orbital scrubbers allow maintenance teams to maintain a high level of cleanliness with minimal chemical and water usage. By actively removing dirt and grime, as well as the chemical residue that attracts dirt, orbital scrubbers help maintenance staff to keep the school healthier. The introduction of orbital scrubbers has allowed school districts across the country to maximize operational resources, enhance the learning environment while continuing to achieve a high level of appearance that meets the expectations of parents and staff.

While orbital scrubbers achieve a high level of performance for daily scrubbing, these machines also offer the flexibility to be used for deep scrubbing and chemical-free floor finish removal. Traditionally, the deep scrub and recoat process required many hours of labor, multiple machines and harsh chemicals. Orbital scrubbers allow schools to perform this operation with water only — no chemicals — helping schools to enjoy significant budget savings while introducing fewer chemicals in to their facilities.

This article originally appeared in the issue of .

About the Author

Scott Keller is a market manager for Nilfisk, Inc. (www.advance-us.com, www.clarkeus.com). He can be reached at 763/745-3824.

Featured

  • El Paso District Breaks Ground on New Elementary School

    The Canutillo Independent School District in El Paso, Texas, recently announced that construction has begun on a 119,000-square-foot elementary school, according to a news release. The district partnered with Pfluger Architects, Carl Daniel Architects, and LDCM Solutions on the new Davenport Elementary School, which has an expected completion date of 2027.

  • Armstrong World Industries Acquires Parallel Architectural Products

    Armstrong World Industries, provider of interior and exterior architectural applications, recently announced that it has acquired the Colorado-based Parallel Architectural Products, according to a news release.

  • Photo credit: Elkus Manfredi Architects

    University of Virginia Selects Design-Build Team for New Residential Complex

    The University of Virginia in Charlottesville, Va., recently announced that it has selected a design-build team for a new upper-class residential development on campus, according to a news release. Capstone Development Partners—in partnership with Elkus Manfredi Architects and the Hoar Construction/Hourigan construction team—will move forward with the three-building, 310,000-square-foot housing facility.

  • Spaces4Learning Trends & Predictions for Educational Facilities in 2026: Part II

    As education leaders look toward 2026, the design of K–12 and higher education facilities is being reshaped by powerful, converging forces. Survey respondents point to the rapid growth of Career and Technical Education, deeper alignment with workforce and industry needs, and the accelerating influence of AI and emerging technologies.

Digital Edition