Creating Organic Learning Environments Through Sustainable Design

Organic Learning Environments

PHOTO BY LUIS AYALA, COURTESY OF MATZKE ELEMENTARY IN CYPRESS-FAIRBANKS ISD

We tend to think of buildings as static objects when, in fact, they are organic environments that interact with their human inhabitants. This is essentially the argument that Steward Brand makes in his book How Buildings Learn (Viking, 1994). Architects tend to view buildings as complete at the end of their construction phase. Brand argues that that is only the beginning of their stories and that their human inhabitants will inevitably alter them and adapt them to suit their individual and collective needs for the space. Buildings learn even as their inhabitants learn to inhabit them. This kind of interaction is core to many of the practices of sustainable architecture.

At an intuitive level, designers realize that most spaces should be designed with a degree of adaptability in mind. However, truly mindful design extends this beyond the traditional bounds and asks questions about how this reality can be exploited to create dynamic environments where the building facilitates positive interactions. One obvious opportunity here is to synthesize sustainability design with an active learning environment. Even in non-educational buildings fusing technology with sustainability with learning has been shown to have significant impacts. For instance, utility companies have started using gamification techniques in conjunction with smart electricity meters to make users aware of their usage and to encourage them to reduce energy usage. Learning is taking place here, and this kind of methodology can easily be integrated into an active learning curriculum.

This is not a new concept. As early as 1993, Anne Taylor, president of School Zone Institute and professor of architecture emerita at the University of New Mexico, wrote, “The structure itself and the surrounding landscape is not passive space but can be an active learning tool for the learning of physics, geometry, botany, and ecology. Teachers, students and parents learn to ‘read the environment,’ interact with and learn from it at many levels.” This article was written even before the advent of modern technological tools, such as the aforementioned smart meters. Taylor goes on to say, “and we have used the architecture of the school classroom, museum exhibits, and the landscape to demonstrate how the built and natural environments reveal the ideas, laws, and principles, which we presently are trying to teach children from textbooks.”

Organic Learning Environments

PHOTO BY LUIS AYALA, COURTESY OF MATZKE ELEMENTARY IN CYPRESS-FAIRBANKS ISD

Research has demonstrated that the more we can get the students involved in active learning as opposed to teaching theory from textbooks the better they internalize the lessons being taught. In 2016, PBK Architects completed Neill Elementary for Fort Bend ISD outside of Houston, Texas. This campus is unique in its focus on sustainability, and steps have been taken to introduce the students to the workings of the school through its unique interfaces and active learning opportunities. These range from the high-tech facility monitoring system, which is visible to the students through a large screen in the main hallway to low-tech, student-run planter boxes in the playground area. These, as well as other features, help integrate the students into their learning environment in ways that are not possible in schools designed without sustainability in mind.

Combatting global climate change will be the central feature of our students’ lives. Making them aware of the direct connections between their actions locally and giving them the scientific tools necessary to study and create solutions may ultimately impact their ability to survive in this environment. Building schools that interact with the educational goals of sustainability is good educational practice and good stewardship of our children’s’ future.

This article originally appeared in the School Planning & Management March 2019 issue of Spaces4Learning.

About the Author

Tom Haymes is a PBK Consultant for Innovation and Learning. He has 15-plus years of experience in technology and instruction as a university faculty member, project manager, director, and speaker at a variety of conferences. He has managed advanced projects that integrate a wide range of next generation learning environments, including MakerSpaces, facilitated collaboration areas, advanced STEM labs, digital media centers, informal collaboration spaces, and different types of active learning classroom spaces.

Featured

  • Rice University to Build New Student Life Complex

    Rice University in Houston, Texas, recently announced that a groundbreaking ceremony for the upcoming Moody Center Complex for Student Life (MCCSL) will take place on May 8, 2025, according to a university news release. The 75,000-square-foot facility was designed by architecture firm Olson Kundig with Page serving as executive architect, and it has an estimated completion date of fall 2027.

  • Mesa West Capital Provides Loan to Refinance University of Georgia Residence Complex

    Mesa West Capital recently announced that it has provided a $133.9-million, short-term, first mortgage loan to developer LV Collective (“LV”) to refinance a student housing complex near the University of Georgia, according to a news release. Rambler Athens, a 750-bed residence hall adjacent to the campus, was completed in August 2024.

  • ECM Technologies Wins ‘Most Innovative Business of the Year’ Award

    HVAC preventative maintenance and efficiency solutions provider ECM Technologies was recently named the “Most Innovative Business of the Year” at the 2025 Champions of Change Awards, according to a news release. The program recognizes Arizona business leaders and organizations taking steps to make a positive impact on the state through innovative thinking and philanthropy.

  • Lewis C. Cassidy Elementary School

    Established in 1999, the Education Design Showcase is a vehicle for showing off innovative — yet practical — solutions in planning, design, architecture, and construction. Lewis C. Cassidy Elementary School has been recognized with an EDS 2025 Grand Prize award in the category of New Construction.

Digital Edition