How do we specify glass railings?

Glass design and engineering analysis can be inconsistent across projects. There are several possible reasons for this including the treatment of guardrails as a product rather than an engineered structure, general inexperience with glass as an engineered material, and limited access to glass design software in the U.S.

To ensure you have all the pertinent details, ask suppliers to provide you with a comprehensive proposal, including detailed takeoffs with specific inclusions or exclusions for each railing style within the project scope. These details should include aspects such as finish, linear footage, structural attachment, and makeup. Additionally, request a submittal package that includes 3D renderings based on the architectural and structural specifics for the project.

High-definition surveying (HDS) technology offers tremendous benefits over conventional surveying. It allows for the capture of thousands of critical measurements with precision accuracy, thereby significantly reducing the need for fabrication rework. It also offers a much faster track to the manufacturing process by eliminating the risk of human error and saving weeks of manual field measuring.

Regardless of the method selected for analysis, there are two key principles that should be considered when specifying glass railing: the elastic properties of laminate interlayers (and how they change with temperature and load duration), and understanding that local stresses—e.g., contact materials, support size, and hole size—are critical. In light of these varying factors, it’s recommended that a good finite element program be used to accurately determine glass stresses instead of any manual analysis.

Glass analysis is the most critical aspect of specifying point-supported glass due to life-safety factors. It’s essential that those who have a stake in a project understand this and take appropriate measures to ensure that building code requirements are met.

This article originally appeared in the College Planning & Management June 2019 issue of Spaces4Learning.

About the Author

Dan Stachel is vice president of Trex Commercial Products (www.trexcommercial.com).

Featured

  • Upcoming University of Alabama Performing Arts Center Hits Construction Milestone

    The University of Alabama in Tuscaloosa, Ala., recently celebrated the topping out of its new Smith Family Center for Performing Arts, according to a news release. The university is partnering with HPM for program and project management on the facility, which broke ground in 2023 and is scheduled for completion in November 2026.

  • North Texas School District Completes Third New Elementary School

    The Denton Independent School District in Dallas, Texas, recently finished construction on its third prototype design elementary school, Reeves Elementary, according to a news release.

  • LAN, Inc. Opens Office in College Station, Texas

    Lockwood, Andrews & Newnam, Inc. (LAN) recently announced the opening of a new office in College Station, Texas, to support its regional client base, according to a news release. The organization provides engineering, design, and program management services for water, wastewater, transportation, stormwater, and education clients in the Brazos Valley.

  • UNT Dallas Holds Ribbon-Cutting Ceremony for $100M STEM Building

    The University of North Texas at Dallas in Dallas, Texas, recently celebrated the opening of its new, $100-million STEM Building, according to local news. The ceremony on Dec. 2 preceded the first day of classes in the facility on Jan. 12, 2026.

Digital Edition