How do we specify glass railings?

Glass design and engineering analysis can be inconsistent across projects. There are several possible reasons for this including the treatment of guardrails as a product rather than an engineered structure, general inexperience with glass as an engineered material, and limited access to glass design software in the U.S.

To ensure you have all the pertinent details, ask suppliers to provide you with a comprehensive proposal, including detailed takeoffs with specific inclusions or exclusions for each railing style within the project scope. These details should include aspects such as finish, linear footage, structural attachment, and makeup. Additionally, request a submittal package that includes 3D renderings based on the architectural and structural specifics for the project.

High-definition surveying (HDS) technology offers tremendous benefits over conventional surveying. It allows for the capture of thousands of critical measurements with precision accuracy, thereby significantly reducing the need for fabrication rework. It also offers a much faster track to the manufacturing process by eliminating the risk of human error and saving weeks of manual field measuring.

Regardless of the method selected for analysis, there are two key principles that should be considered when specifying glass railing: the elastic properties of laminate interlayers (and how they change with temperature and load duration), and understanding that local stresses—e.g., contact materials, support size, and hole size—are critical. In light of these varying factors, it’s recommended that a good finite element program be used to accurately determine glass stresses instead of any manual analysis.

Glass analysis is the most critical aspect of specifying point-supported glass due to life-safety factors. It’s essential that those who have a stake in a project understand this and take appropriate measures to ensure that building code requirements are met.

This article originally appeared in the College Planning & Management June 2019 issue of Spaces4Learning.

About the Author

Dan Stachel is vice president of Trex Commercial Products (www.trexcommercial.com).

Featured

  • Los Angeles City College Breaks Ground on New Administration, Workforce Building

    Los Angeles City College (LACC) in Los Angeles, Calif., recently broke ground on a new $72-million administrative facility, according to a news release. The Cesar Chavez Administration and Workforce Building will stand four stories, cover 67,230 square feet, and play home to a wide variety of the school’s educational and administrative services.

  • University of Kansas Opens $400M Football Stadium Reconstruction

    The University of Kansas in Lawrence, Kan., recently announced that the $400-million reconstruction of David Booth Kansas Memorial Stadium is complete in time for the 2025 football season, according to a news release. The university partnered with Turner Construction Company on the project.

  • Case Study Highlights Texas District’s Campus Security Upgrades

    The Taft Independent School District near Corpus Christi, Texas, recently partnered with Intech Southwest Services to revamp its campus security technology system, according to a news release. Intech has released a case study on its website detailing the process that advanced the district’s technology by more than 20 years in less than three weeks.

  • Pittsburgh High School Upgrades Athletics Facilities’ Technology

    Plum Senior High School in Pittsburgh, Penn., recently partnered with South-Dakota-based Daktronics through the We’re All Mustangs Here Foundation to upgrade the technology in its athletics facilities, according to a news release. Daktronics designed, built, and installed new LED video displays and finished the project in time for the beginning of the 2025 high-school football season.