University Researchers Model Effects of Floating Solar Farms

Solar panel arrays that cover canals and other waterways—also known as floating solar farms—have become an increasingly intriguing possibility as sustainable energy practices gain momentum. Trying to build conventional solar farms can prove controversial because the arrays cover vast areas of land. Constructing them on water, then, is a way to take advantage of space that would otherwise likely go unused.

Researchers from the University of Stirling in Stirling, Scotland, and Lancaster University in Lancashire, England, have finished the first detailed model of floating solar installations’ environmental effects on the bodies of water they cover.

Floating Solar Farms
Floating solar farms could help to protect lakes and reservoirs from some of the harms of climate change, a new study suggests. However, given the complex nature of water bodies and differing designs of solar technologies, there could also be detrimental ecosystem impacts of deploying floating solar arrays.
Photo Credit: Giles Exley

“As demand for land increases, water bodies are increasingly being targeted for renewable energy,” said Giles Exley, lead author of the study and a PhD researcher from Lancaster University. “Deployment of solar on water increases electricity production, but it is critical to know if there will be any positive or negative environmental consequences,” he said.

Results of the study indicate that floating solar farms have a positive impact on the surrounding areas. By covering the water’s surface, they help cool the water temperature, reducing the potential for evaporation and the growth of toxic algae. It can also reduce what researchers call the “stratification” of water—when the sun’s heat creates distinct layers of water of different temperatures. Water at the bottom layer can lose oxygen, which can reduce quality in supplies of drinking water.

In a similar study, researchers at the University of California, Santa Cruz and the University of California, Merced studied the potential effects of covering the state’s 6,350 km of canals with solar arrays. They concluded that the arrays would save about 40,000 cubic meters of water (roughly equal to 16 Olympic swimming pools) per kilometer of canal from evaporation every year. They also discovered a slight performance increase in the solar arrays due to a cooler microclimate above the water’s surface.

According to the British scientific journal Nature, “the benefits outweigh the costs of having to build the panels over the canals, the team concludes.”

About the Author

Matt Jones is senior editor of Spaces4Learning. He can be reached at [email protected].

Featured

  • Designing School Spaces for A++ Performance

    In recent years, the educational world has gained greater appreciation for the ways a space’s aesthetics, just like its acoustics, can positively impact educational outcomes. Consequently, engineering, designing, and constructing a school environment demands acoustics to be equally an art and a science, requiring architects and designers to see with their ears, while acousticians must hear with their eyes.

  • S4L Launches 2025 Facilities and Construction Brief Survey

    Spaces4Learning recently launched its 2025 Facilities and Construction Brief Survey, which gathers information on K–12 and higher education construction projects nationwide from the previous year. The data we get from you, our readers, forms an industry report offering an overview of current trends in school facilities.

  • Florida Elementary School to Undergo $47M Reconstruction

    The School District of Osceola County in Kissimmee, Fla., recently announced a partnership with construction firm Skanska to reconstruct Reedy Creek Elementary School, according to a news release. The $47-million project will involve the new construction of a 96,000-square-foot academic center, renovating the remaining facilities, a full-site redevelopment, and demolishing portions of the existing school.

  • Texas District Breaks Ground on New Elementary School

    The Splendora Independent School District (SISD) in Splendora, Texas, recently broke ground on a replacement facility for Greenleaf Elementary School, according to a news release. The district partnered with planning, engineering and program management firm Lockwood, Andrews & Newnam, Inc. (LAN) for the project.

Digital Edition