University Researchers Model Effects of Floating Solar Farms

Solar panel arrays that cover canals and other waterways—also known as floating solar farms—have become an increasingly intriguing possibility as sustainable energy practices gain momentum. Trying to build conventional solar farms can prove controversial because the arrays cover vast areas of land. Constructing them on water, then, is a way to take advantage of space that would otherwise likely go unused.

Researchers from the University of Stirling in Stirling, Scotland, and Lancaster University in Lancashire, England, have finished the first detailed model of floating solar installations’ environmental effects on the bodies of water they cover.

Floating Solar Farms
Floating solar farms could help to protect lakes and reservoirs from some of the harms of climate change, a new study suggests. However, given the complex nature of water bodies and differing designs of solar technologies, there could also be detrimental ecosystem impacts of deploying floating solar arrays.
Photo Credit: Giles Exley

“As demand for land increases, water bodies are increasingly being targeted for renewable energy,” said Giles Exley, lead author of the study and a PhD researcher from Lancaster University. “Deployment of solar on water increases electricity production, but it is critical to know if there will be any positive or negative environmental consequences,” he said.

Results of the study indicate that floating solar farms have a positive impact on the surrounding areas. By covering the water’s surface, they help cool the water temperature, reducing the potential for evaporation and the growth of toxic algae. It can also reduce what researchers call the “stratification” of water—when the sun’s heat creates distinct layers of water of different temperatures. Water at the bottom layer can lose oxygen, which can reduce quality in supplies of drinking water.

In a similar study, researchers at the University of California, Santa Cruz and the University of California, Merced studied the potential effects of covering the state’s 6,350 km of canals with solar arrays. They concluded that the arrays would save about 40,000 cubic meters of water (roughly equal to 16 Olympic swimming pools) per kilometer of canal from evaporation every year. They also discovered a slight performance increase in the solar arrays due to a cooler microclimate above the water’s surface.

According to the British scientific journal Nature, “the benefits outweigh the costs of having to build the panels over the canals, the team concludes.”

About the Author

Matt Jones is senior editor of Spaces4Learning. He can be reached at [email protected].

Featured

  • Anderson Brulé Architects Rebrands as ABA Studios

    Anderson Brulé Architects, based in San Jose, Calif., recently announced that it is celebrating 40 years of service by rebranding under a new name, according to a news release. The architectural, interior design, and planning firm will now be known as ABA Studios to refresh its identity underneath a new generation of leadership.

  • California K–12 District Opens New Athletic Complex, Gym

    The San Mateo Union High School District (SMUHSD) in San Mateo, Calif., recently announced the completion of two new athletics facilities: a new gymnasium at Burlingame High School, and a new athletic training complex at San Mateo High School, according to a news release.

  • Recent University of Pennsylvania Projects Receive LEED Certifications

    The University of Pennsylvania in Philadelphia, Penn., recently announced that three of its recent construction projects have earned LEED certifications, according to university news. The Vagelos Laboratory for Energy Science and Technology (VLEST) received a LEED Platinum certification, Amy Gutmann Hall a LEED Gold, and the OTT Center for Track and Field a LEED silver.

  • Spaces4Learning Announces Winners of 2025 Product Awards

    Spaces4Learning has just announced the winners of the 2025 Product Awards! The award program recognizes innovation and excellence in products that enhance learning environments in K–12 schools and institutions of higher education.

Digital Edition