University of Maryland Breaks Ground on New Chemistry Building

On the campus of the University of Maryland in College Park, Md., officials gathered recently to break ground on a new 105,000-square-foot chemistry building. The facility will serve the Department of Chemistry and Biochemistry and provide space for research and innovations in fields like advanced materials, energy storage, nanoscience, quantum chemistry and drug discovery and delivery.

“Today, we break ground on a research building that will accelerate innovation for the University of Maryland’s Department of Chemistry and Biochemistry,” said university president Darryll J. Pines. “Thanks to investment by the state of Maryland and generous partners, this new facility gives us a competitive edge at a critical time to tackle grand challenges with leading technologies.”

The facility will feature amenities like 34 research labs, two core research facilities, and about 13,000 square feet of collaboration space. It will also have a grand colloquia and events venue for conferences and celebrations, as well as 12 smaller meeting and huddle rooms. The project is being funded through the state of Maryland’s capital budget.

“This new building will expand our legacy of leadership in the chemical sciences,” said Amitabh Varshney, dean of the university’s College of Computer, Mathematical, and Natural Sciences. “In this new chemistry building, our faculty and students will create nanomaterials for next-generation biosensors, fabrics and batteries; develop biomolecules functionalized to treat human diseases; and explore the chemistry required for quantum devices.”

The new building comes with a price tag of $116 million, $105 million of which is coming from the state, Pines said at the groundbreaking ceremony. It was designed by architectural firm Ballinger, and construction will be done by the Whiting-Turner Contracting Company. The building is scheduled to open to students in 2023.

“We aim to be a Top 10 chemistry and biochemistry program, and this new building is the physical catalyst necessary to help us achieve that goal,” said Department of Chemistry and Biochemistry Professor and Chair Janice Reutt-Robey.

About the Author

Matt Jones is senior editor of Spaces4Learning. He can be reached at [email protected].

Featured

  • Different Starting Points, Same End Goal

    Higher education campuses can enhance student experience by implementing mobile credentials to streamline building access, on-campus payments, and access to other amenities. This enables students to connect to their campuses through the technology they use most: their mobile devices.

  • New City School

    Turning Crisis into Opportunity: Transforming New City School

    When New City School in St. Louis suffered catastrophic flood damage in July 2022, the event could have marked a serious setback for the 100-year-old institution. Instead, it became a forward-looking opportunity.

  • sapling sprouting from a cracked stone

    Lessons in Resilience: Disaster Recovery in Our Schools

    Facility managers play a pivotal role in how well a school weathers and recovers from a crisis. Whether it's a hurricane, a flood, a tornado, or a man-made event, preparation determines resilience.

  • Abstract tech network data connections with orange, blue glowing dots, lines

    3 Trends for Higher Education to Stay Ahead of in 2026

    As universities enter the new year, the question is no longer whether digital transformation is necessary, but how quickly institutions can convert technological potential into strategic advantage.

Digital Edition