Chiller Plant Optimization Saves Energy

chiller plant

The Institute for Bioscience and Biotechnology Research on the University of Maryland campus cut energy use an average of 30 percent by optimizing its chiller plant.

When the University of Maryland committed to reducing its energy consumption 20 percent by 2020, James Johnson, director of facilities and lab services, had to find a way to make the 110,000-square-foot Institute for Bioscience and Biotechnology Research (IBBR) more efficient.

The biggest target was the facility’s environmental stabilization plant, “as big an energy pig as there was out there,” says Johnson. The plant was only five years old and had few operational issues, but a consultation with Optimum Energy engineers revealed that optimizing each piece of HVAC equipment individually, as part of the whole system, could increase efficiency considerably.

Johnson also wanted to improve reliability and redundancy. IBBR connects top scientists in interrelated fields to perform world-class bioscience and biotechnology research that leads to real-world advances, and anything that stabilizes lab environments furthers the mission. Plus, Johnson had to ensure the facility’s two 450-ton, variable-speed electric centrifugal water chillers — which provide 3,800 hours of cooling annually — would work at optimal levels regardless of outside conditions, from icy winters to steamy summers.

To accomplish these goals, IBBR converted to an all-variable flow plant, with Optimum Energy’s OptiCx™ Platform as the optimization and control layer. OptimumLOOP ™ software calculates the most efficient operation of the chilled water system and optimizes plant performance in real time, dynamically adapting to changes in load, weather and occupancy to yield the lowest possible kW/ton while maintaining the optimal temperature.

In the first year, output almost doubled — yet IBBR cut energy use by an average of 30 percent.

“Prior to optimizing, in 2014, the plant baseline was about 0.9 kW/ton. By the end of 2015, it was 0.57–0.65 kW/ton,” Johnson says. “I’ve got a plant that is running at absolute maximum efficiency.”

optimumenergyco.com

This article originally appeared in the issue of .

Featured

  • Greenheck Launches Optics Sensors for Kitchen Hoods

    Greenheck recently announced the launch of factory-installed optics sensors as an enhanced option for its kitchen ventilation hoods, according to a news release.

  • Spaces4Learning Launches 2025 New Product Awards

    Spaces4Learning is now accepting entries for the 2025 New Product Awards! The program’s goal is to honor the outstanding product development achievements of manufacturers and suppliers whose products and services are particularly noteworthy in helping to improve K–12 and Higher Education learning environments.

  • Tennant Company Launches Autonomous Floor Scrubber

    Cleaning equipment and solutions provider Tennant Company recently launched the new X6 ROVR, a mid-sized robotic scrubber designed for large commercial and light-industrial environments, according to a news release. The autonomous machine can clean up to 75,000 square feet peer cycle with minimal needs for manual assistance.

  • Texas A&M Adds ALPR Technology to Parking Solutions

    Texas A&M University in College Station, Texas, recently integrated automatic license plate recognition (ALPR) technology into its parking services and enforcement strategies, according to a news release. The university’s Transportation Services division deployed Genetec AutoVu ALPR to manage the campus’ 36,000+ parking spaces.

Digital Edition