Chiller Plant Optimization Saves Money

chiller plant

Baylor saved more than $460,000 (about 24 percent of electricity costs), 5.8 million kilowatt-hours, and 8.6 million pounds of CO2 with Optimum Energy.

Baylor University in Waco, TX, had a typical chiller plant—it ran well, but it was a hodgepodge of equipment and it was managed manually. Operators judged once per shift when to add or shed electricity load based on demand. That imprecise, inconsistent process made the plant inefficient.

Kenneth Haltom, who manages Baylor’s energy services through a partnership with Aramark, and his team suspected that chiller plant optimization would be the best way to increase efficiency and reduce energy costs. There was good savings potential: the eight-chiller plant, which cools 4.9 million square feet of space 365 days a year, was using 32 million kWh of electricity annually.

The team brought in Optimum Energy to assess the opportunity, and found their hypothesis was right. Optimum installed its OptimumLOOP software and OptiCx platform. The closed-loop optimization solution reads data every 30 seconds and dynamically adjusts plant equipment in real time in response to changing conditions. The software determines the best operating conditions across the plant and makes on-the-fly changes to all eight chillers, water pumps and cooling tower equipment.

“OptimumLOOP made everything automatic, from slightly adjusting a single valve to improve water flow, to shedding entire machines from the system when demand decreases,” explains Haltom. “Each chiller operates at a different output and rate, depending on what gives us the greatest efficiency.”

In the first year of operation, plant efficiency went from 0.897 kW/ton to 0.681 kW/ton. Baylor saved more than $460,000 (about 24 percent of electricity costs), 5.8 million kilowatt-hours and 8.6 million pounds of CO2. Also, air-conditioned spaces became more comfortable, and chiller equipment is now easier to maintain.

“Chiller optimization offered us the biggest bang for the buck,” says Haltom. “The product from the chiller plant is better, more consistent, and it’s now based on real-time load rather than operator guesses.”

www.optimumenergyco.com

This article originally appeared in the College Planning & Management February 2018 issue of Spaces4Learning.

Featured

  • Pudu Robotics Launches AI-Powered, Large-Scale Floor Sweeper

    Pudu Robotics recently launched the newest member of its MT1 series of robotic floor sweepers, the PUDU MT1 Max, according to a news release. The AI-powered, 3D perception robotic sweeper was designed for use in large, complex cleaning environments both indoors and semi-outdoors, like parking garages and semi-open building atriums.

  • Three U.S. Universities Install Acre Security Access Control Platform

    Cloud-native physical and digital security solutions company Acre Security recently announced that it has deployed its access control platform at three major universities in the U.S., according to a news release. Acre partnered with Atrium Campus to provide coverage for more than 69,000 students at the University of Virginia (UVA), George Mason University, and Rockhurst University.

  • T&T Construction Management Group Completes Pasco High School Expansion

    Pasco High School in Dade City, Fla., recently announced that it has completed an expansion project in partnership with T&T Construction Management Group, Inc., Harvard Jolly Architecture, and Williams Company.

  • Elevating Campus Maintenance: How Power Wash Drones are Transforming Educational Facilities

    As today’s campuses grow larger and more architecturally complex, keeping exteriors clean, safe, and inviting has never been tougher. Facilities leaders are under constant pressure to stretch budgets, meet safety standards, and support sustainability goals—all while tackling the stubborn challenge of exterior cleaning.

Digital Edition