Chiller Plant Optimization Saves Money

chiller plant

Baylor saved more than $460,000 (about 24 percent of electricity costs), 5.8 million kilowatt-hours, and 8.6 million pounds of CO2 with Optimum Energy.

Baylor University in Waco, TX, had a typical chiller plant—it ran well, but it was a hodgepodge of equipment and it was managed manually. Operators judged once per shift when to add or shed electricity load based on demand. That imprecise, inconsistent process made the plant inefficient.

Kenneth Haltom, who manages Baylor’s energy services through a partnership with Aramark, and his team suspected that chiller plant optimization would be the best way to increase efficiency and reduce energy costs. There was good savings potential: the eight-chiller plant, which cools 4.9 million square feet of space 365 days a year, was using 32 million kWh of electricity annually.

The team brought in Optimum Energy to assess the opportunity, and found their hypothesis was right. Optimum installed its OptimumLOOP software and OptiCx platform. The closed-loop optimization solution reads data every 30 seconds and dynamically adjusts plant equipment in real time in response to changing conditions. The software determines the best operating conditions across the plant and makes on-the-fly changes to all eight chillers, water pumps and cooling tower equipment.

“OptimumLOOP made everything automatic, from slightly adjusting a single valve to improve water flow, to shedding entire machines from the system when demand decreases,” explains Haltom. “Each chiller operates at a different output and rate, depending on what gives us the greatest efficiency.”

In the first year of operation, plant efficiency went from 0.897 kW/ton to 0.681 kW/ton. Baylor saved more than $460,000 (about 24 percent of electricity costs), 5.8 million kilowatt-hours and 8.6 million pounds of CO2. Also, air-conditioned spaces became more comfortable, and chiller equipment is now easier to maintain.

“Chiller optimization offered us the biggest bang for the buck,” says Haltom. “The product from the chiller plant is better, more consistent, and it’s now based on real-time load rather than operator guesses.”

www.optimumenergyco.com

This article originally appeared in the College Planning & Management February 2018 issue of Spaces4Learning.

Featured

  • Recent University of Pennsylvania Projects Receive LEED Certifications

    The University of Pennsylvania in Philadelphia, Penn., recently announced that three of its recent construction projects have earned LEED certifications, according to university news. The Vagelos Laboratory for Energy Science and Technology (VLEST) received a LEED Platinum certification, Amy Gutmann Hall a LEED Gold, and the OTT Center for Track and Field a LEED silver.

  • UNL Kiewit Hall

    Designing for Engineering Excellence: Integrating Sustainability and Wellness at UNLs Kiewit Hall

    Kiewit Hall at the University of Nebraska-Lincoln exemplifies how academic institutions can integrate sustainability and wellness into modern learning environments. With an integrated and collaborative team approach, Kiewit Hall addresses enhanced learning and creativity, physical health, and mental wellness, and fosters a sense of community through innovative design, operations, and policy solutions.

  • Missouri State University Debuts Construction Education Center

    Missouri State University in Springfield, Mo., recently opened a new 10,000-square-foot addition and renovation to support the School of Construction, Design, and Project Management, according to university news. The Construction Education Success Center, built onto the existing Kemper Hall, provides academic space for the school’s construction managers and cost $9.6 million.

  • Empowering People Through Smart, Sustainable Campuses

    Sustainability is facing increasing scrutiny, with some questioning its costs and priorities. Yet for universities, it remains an essential driver of resilience, operational efficiency and long-term competitiveness. At the same time, there is a growing recognition that sustainable transformation is not just about reducing energy consumption and emissions to comply with tightening regulations ‒ it’s about creating vibrant, comfortable environments where people can thrive, innovate and connect. For university leadership, this is a complex balancing act, with rising energy costs and limited budgets only adding to the challenge.

Digital Edition