U Toledo Developing Solar Sheets to Generate Power in Space

The University of Toledo just received a five-year, $12.5 million grant from the U.S. Air Force to develop flexible solar cell sheets for space. The photovoltaic energy sheets will be used to collect solar energy for powering Earth-based receivers or other orbital or aerial instrumentation, such as communications satellites.

Physicists at the institution will develop flexible solar cell sheets, each about the size of a piece of paper, which can be assembled and connected into considerably larger structures. A single space-based array could use tens of millions of the sheets and extend to sizes as large as a square mile. (U Toledo won't be engineering the arrays, however.) An array of that size is projected to be able to generate about 800 megawatts of electrical power, enough to power about 130,000 houses on earth for the day.

Professor Randall Ellingson receives grant from U.S. Air Force
Randall Ellingson, a professor of physics, received a $12.5 million grant from the U.S. Air Force to develop space-based solar energy sheets for transmitting clean power back to Earth or satellites in orbit.
Source: University of Toledo

The researchers are building tandem solar cells—two cells stacked on top of each other that are more efficient for harvesting the sun's spectrum—on ultra-thin, flexible supporting materials. The team will "sandwich" various groupings of solar cells, including perovskites, silicon, cadmium telluride and copper indium gallium selenide, to see what the optimal combination is. The team will also investigate the use of lightweight, flexible supporting material—thin ceramic, plastics and glass—to create the large solar cell sheets. According to the physicists, those materials need to be "resilient, ultra-thin and tolerant to high and low temperatures."

"With 37% stronger sunlight above the atmosphere than on a typical sunny day here on Earth's surface, orbital solar arrays offer a critical opportunity to harness renewable energy, achieve sustainability goals and provide strategic power for a wide range of orbital and airborne technologies," said Randall Ellingson, a professor in the university's Department of Physics and Astronomy, member of the school's Wright Center for Photovoltaics Innovation and Commercialization and leader of the project, in a statement.

This isn't the first time Ellingson has worked with the Air Force on space projects. In 2019, his team received $7.4 million to develop solar technology to power space vehicles using sunlight.

About the Author

Dian Schaffhauser is a former senior contributing editor for 1105 Media's education publications THE Journal, Campus Technology and Spaces4Learning.

Featured

  • Houston K–12 District Opens New Elementary School

    The Lamar Consolidated Independent School District (Lamar CISD) recently announced the completion of a new elementary school in a western suburb of Houston, Texas, according to a news release. Haygood Elementary School measures in at 110,000 square feet, has the capacity for 854 students, and is the first of three new schools scheduled to be built in the Cross Creek West community.

  • Different Starting Points, Same End Goal

    Higher education campuses can enhance student experience by implementing mobile credentials to streamline building access, on-campus payments, and access to other amenities. This enables students to connect to their campuses through the technology they use most: their mobile devices.

  • Preparing for the Next Era of Healthcare Education, Innovation

    Across the country, public universities and community colleges are accelerating investments in healthcare education facilities as part of a broader strategy to address workforce shortages, modernize outdated infrastructure, and expand clinical training capacity. These projects, which are often located at the center of campus health and science districts, are no longer limited to traditional classrooms.

  • Spaces4Learning Trends & Predictions for Educational Facilities in 2026: Part I

    We asked, you answered, and the results are in! Last year, we put out a call for submissions to collect our readership’s opinion on trends and predictions for K–12 and higher education facilities in 2026.

Digital Edition