University of Washington

Molecular Engineering & Sciences Building

University of Washington

PHOTOS © BENJAMIN BENSCHNEIDER

The University of Washington in Seattle desired a facility to accommodate growth in molecular engineering; respond to the evolving interdisciplinary nature of teaching and research; and fit within an area of campus that is home to recently revitalized facilities, as well as traditional campus architecture. Research within the building will lead to new discoveries with beneficial implications for major societal challenges ranging from energy, sustainability, and the environment to information technology to affordable and effective healthcare.

Designed by ZGF Architects LLP, the project provides the necessary research laboratories and faculty offices to bring together students and researchers across science and engineering disciplines, which were previously dispersed throughout the campus. Associated molecular and nanotechnology instrumentation is also consolidated into the new facility to provide greater synergy and enhanced research capabilities. The integrated design provides tight adjacency between offices and research laboratories to encourage and facilitate collaboration between various disciplines. A further goal was for the facility to support the university’s commitment to advancing environmental stewardship by targeting new energy-saving strategies in a technically challenging laboratory environment.

The performance-driven design encompasses technical systems integration, while simultaneously addressing the environmental impacts of the technologies.

The 90,000-square-foot, five-story building, providing light-filled above-grade office, laboratory and common spaces, is the foundation for the master planned 160,000-squarefoot two-phase project. As part of Phase 1, ground and basement level instrumentation labs meet ultra-low vibration and electromagnetic interference requirements, and allow all regularly occupied research labs and offices to take advantage of daylight and views.

The five-story building provides the optimum program for the site. The narrow building footprint supports natural ventilation and daylighting strategies. Daylight from N, S, E and W compass coordinates improves user experience, encourages interaction, and provides transparency and connectivity between laboratory and office researchers on all four floors of regularly occupied building space.

This article originally appeared in the College Planning & Management December 2013 issue of Spaces4Learning.

Featured

  • Nonprofit Launches Center to Boost Data-Driven Student Success Strategies

    National nonprofit Complete College America (CCA) recently launched the Center for Leadership, Institutional Metrics, and Best Practices (CLIMB), according to a news release. CLIMB’s ultimate purpose is to help higher-education institutions use data-driven strategies to improve student outcomes by providing tools, frameworks, and support.

  • Springfield Breaks Ground on $53.7M Pipkin Middle School Rebuild

    Construction is underway on a new, state-of-the-art Pipkin Middle School in Springfield, Mo., a major step in Springfield Public Schools’ (SPS) long-term facility improvement plan, according to local news. The $53.7-million project officially broke ground in early June, following years of planning and community input aimed at modernizing aging infrastructure and addressing student capacity concerns.

  • Florida Elementary School to Undergo $47M Reconstruction

    The School District of Osceola County in Kissimmee, Fla., recently announced a partnership with construction firm Skanska to reconstruct Reedy Creek Elementary School, according to a news release. The $47-million project will involve the new construction of a 96,000-square-foot academic center, renovating the remaining facilities, a full-site redevelopment, and demolishing portions of the existing school.

  • Abstract colorful arrows in front of a contemporary university building

    Spaces4Learning 2025 Trends in Higher Education

    With 2025 well underway, it’s time to take a look at some broader trends submitted by you, our Spaces4Learning readership. We asked for your thoughts on topics like classroom design, health & safety, materials & construction, and technology in both K–12 and higher-education environments. Below is a roundup of 2025 trends in higher education from the experts in the trenches.

Digital Edition