University Researchers Model Effects of Floating Solar Farms

Solar panel arrays that cover canals and other waterways—also known as floating solar farms—have become an increasingly intriguing possibility as sustainable energy practices gain momentum. Trying to build conventional solar farms can prove controversial because the arrays cover vast areas of land. Constructing them on water, then, is a way to take advantage of space that would otherwise likely go unused.

Researchers from the University of Stirling in Stirling, Scotland, and Lancaster University in Lancashire, England, have finished the first detailed model of floating solar installations’ environmental effects on the bodies of water they cover.

Floating Solar Farms
Floating solar farms could help to protect lakes and reservoirs from some of the harms of climate change, a new study suggests. However, given the complex nature of water bodies and differing designs of solar technologies, there could also be detrimental ecosystem impacts of deploying floating solar arrays.
Photo Credit: Giles Exley

“As demand for land increases, water bodies are increasingly being targeted for renewable energy,” said Giles Exley, lead author of the study and a PhD researcher from Lancaster University. “Deployment of solar on water increases electricity production, but it is critical to know if there will be any positive or negative environmental consequences,” he said.

Results of the study indicate that floating solar farms have a positive impact on the surrounding areas. By covering the water’s surface, they help cool the water temperature, reducing the potential for evaporation and the growth of toxic algae. It can also reduce what researchers call the “stratification” of water—when the sun’s heat creates distinct layers of water of different temperatures. Water at the bottom layer can lose oxygen, which can reduce quality in supplies of drinking water.

In a similar study, researchers at the University of California, Santa Cruz and the University of California, Merced studied the potential effects of covering the state’s 6,350 km of canals with solar arrays. They concluded that the arrays would save about 40,000 cubic meters of water (roughly equal to 16 Olympic swimming pools) per kilometer of canal from evaporation every year. They also discovered a slight performance increase in the solar arrays due to a cooler microclimate above the water’s surface.

According to the British scientific journal Nature, “the benefits outweigh the costs of having to build the panels over the canals, the team concludes.”

About the Author

Matt Jones is senior editor of Spaces4Learning. He can be reached at [email protected].

Featured

  • Average Annual Number of Tornadoes per State

    New Tornado Wind Load Design Criteria in IBC Offer Improvements to Life Safety

    For the first time in U.S. building code history, the 2024 International Building Code (IBC) includes tornado wind load design criteria, marking a significant advancement in life-safety provisions.

  • Tennessee Tech Starts Construction on New ACME Building

    Tennessee Tech University recently held a groundbreaking ceremony for the new Advanced Construction and Manufacturing Engineering (ACME) Building on its campus in Cookeville, Tenn., according to university news. The $89.6-million facility is the second in a recent expansion of the College of Engineering’s buildings on campus. It’s currently scheduled to open at the end of 2028.

  • Texas State University Completes Stadium Renovations

    Texas State University in San Marcos, Texas, recently announced that it has completed a series of additions and renovations to its football stadium, according to a news release. Formerly known as the Bobcat Stadium End Zone Complex, the Johnny and Nathali Weisman Football Performance Center is an 85,000-square-foot expansion featuring hospitality spaces, banquet spaces, exterior concourses, and upgrades to the field house.

  • Kraus-Anderson Completes Improvements at Minnesota Middle, High Schools

    Construction management, real estate, and risk management firm Kraus-Anderson recently announced that it has finished two K–12 renovation projects in Minnesota, according to a news release.

Digital Edition