Chiller Plant Optimization Saves Money

chiller plant

Baylor saved more than $460,000 (about 24 percent of electricity costs), 5.8 million kilowatt-hours, and 8.6 million pounds of CO2 with Optimum Energy.

Baylor University in Waco, TX, had a typical chiller plant—it ran well, but it was a hodgepodge of equipment and it was managed manually. Operators judged once per shift when to add or shed electricity load based on demand. That imprecise, inconsistent process made the plant inefficient.

Kenneth Haltom, who manages Baylor’s energy services through a partnership with Aramark, and his team suspected that chiller plant optimization would be the best way to increase efficiency and reduce energy costs. There was good savings potential: the eight-chiller plant, which cools 4.9 million square feet of space 365 days a year, was using 32 million kWh of electricity annually.

The team brought in Optimum Energy to assess the opportunity, and found their hypothesis was right. Optimum installed its OptimumLOOP software and OptiCx platform. The closed-loop optimization solution reads data every 30 seconds and dynamically adjusts plant equipment in real time in response to changing conditions. The software determines the best operating conditions across the plant and makes on-the-fly changes to all eight chillers, water pumps and cooling tower equipment.

“OptimumLOOP made everything automatic, from slightly adjusting a single valve to improve water flow, to shedding entire machines from the system when demand decreases,” explains Haltom. “Each chiller operates at a different output and rate, depending on what gives us the greatest efficiency.”

In the first year of operation, plant efficiency went from 0.897 kW/ton to 0.681 kW/ton. Baylor saved more than $460,000 (about 24 percent of electricity costs), 5.8 million kilowatt-hours and 8.6 million pounds of CO2. Also, air-conditioned spaces became more comfortable, and chiller equipment is now easier to maintain.

“Chiller optimization offered us the biggest bang for the buck,” says Haltom. “The product from the chiller plant is better, more consistent, and it’s now based on real-time load rather than operator guesses.”

www.optimumenergyco.com

This article originally appeared in the College Planning & Management February 2018 issue of Spaces4Learning.

Featured

  • El Paso District Breaks Ground on New Elementary School

    The Canutillo Independent School District in El Paso, Texas, recently announced that construction has begun on a 119,000-square-foot elementary school, according to a news release. The district partnered with Pfluger Architects, Carl Daniel Architects, and LDCM Solutions on the new Davenport Elementary School, which has an expected completion date of 2027.

  • Texas State University Completes Stadium Renovations

    Texas State University in San Marcos, Texas, recently announced that it has completed a series of additions and renovations to its football stadium, according to a news release. Formerly known as the Bobcat Stadium End Zone Complex, the Johnny and Nathali Weisman Football Performance Center is an 85,000-square-foot expansion featuring hospitality spaces, banquet spaces, exterior concourses, and upgrades to the field house.

  • Illinois State University Breaks Ground on College of Fine Arts Transformation

    Illinois State University in Normal, Ill., recently held a groundbreaking ceremony for the Wonsook Kim College of Fine Arts transformation project, according to university news. The series of new constructions and renovations will upgrade spaces in Centennial East, the Center for the Visual Arts, and the Center for the Performing Arts, as well as replace the existing Centennial West facility with a new Commons Building.

  • UCNJ Launches $30M Modernization of Physical Education Center

    The Union College of Union County (UCNJ) in Cranford, N.J., recently broke ground on a new $30-million modernization project for its Physical Education Center (PECK), according to a news release. The college partnered with DIGroup Architecture for the project’s design, transitioning the existing 42,000-square-foot structure into a campus hub for student athletics and campus life.

Digital Edition