Chiller Plant Optimization Saves Money

chiller plant

Baylor saved more than $460,000 (about 24 percent of electricity costs), 5.8 million kilowatt-hours, and 8.6 million pounds of CO2 with Optimum Energy.

Baylor University in Waco, TX, had a typical chiller plant—it ran well, but it was a hodgepodge of equipment and it was managed manually. Operators judged once per shift when to add or shed electricity load based on demand. That imprecise, inconsistent process made the plant inefficient.

Kenneth Haltom, who manages Baylor’s energy services through a partnership with Aramark, and his team suspected that chiller plant optimization would be the best way to increase efficiency and reduce energy costs. There was good savings potential: the eight-chiller plant, which cools 4.9 million square feet of space 365 days a year, was using 32 million kWh of electricity annually.

The team brought in Optimum Energy to assess the opportunity, and found their hypothesis was right. Optimum installed its OptimumLOOP software and OptiCx platform. The closed-loop optimization solution reads data every 30 seconds and dynamically adjusts plant equipment in real time in response to changing conditions. The software determines the best operating conditions across the plant and makes on-the-fly changes to all eight chillers, water pumps and cooling tower equipment.

“OptimumLOOP made everything automatic, from slightly adjusting a single valve to improve water flow, to shedding entire machines from the system when demand decreases,” explains Haltom. “Each chiller operates at a different output and rate, depending on what gives us the greatest efficiency.”

In the first year of operation, plant efficiency went from 0.897 kW/ton to 0.681 kW/ton. Baylor saved more than $460,000 (about 24 percent of electricity costs), 5.8 million kilowatt-hours and 8.6 million pounds of CO2. Also, air-conditioned spaces became more comfortable, and chiller equipment is now easier to maintain.

“Chiller optimization offered us the biggest bang for the buck,” says Haltom. “The product from the chiller plant is better, more consistent, and it’s now based on real-time load rather than operator guesses.”

www.optimumenergyco.com

This article originally appeared in the College Planning & Management February 2018 issue of Spaces4Learning.

Featured

  • FAU Starts Construction on Holocaust and Jewish Studies Building

    Florida Atlantic University recently began construction on a new academic building for its campus in Boca Raton, Fla., according to university news. The Kurt and Marilyn Wallach Holocaust and Jewish Studies Building will stand two stories, measure in at 22,000 square feet, and play home to the university’s Holocaust education and Jewish studies programs.

  • ClassVR headsets

    Avantis Education Revamps Hardware for ClassVR Solution

    Avantis Education recently announced the launch of two new headsets for its flagship educational VR/AR solution, ClassVR. According to a news release, the Xcelerate and Xplorer headsets expand the company’s offerings into higher education while continuing to meet the evolving needs of K–12 users.

  • Image credit: O

    Strategic Campus Assessment: Moving Beyond Reactive Maintenance in Educational Facilities

    While campuses may appear stable on the surface, building systems naturally evolve over time, and proactive assessment can identify developing issues before they become expensive emergencies. The question isn't whether aging educational facilities need attention. It's how institutions can transition from costly reactive maintenance to strategic asset management in a way that protects both budgets and communities.

  • A university

    Breaking Higher Education's Billion-Dollar Backlog Problem

    Strategic mechanical system design can transform campus maintenance backlogs. Here's how.

Digital Edition