Chiller Plant Optimization Saves Money

chiller plant

Baylor saved more than $460,000 (about 24 percent of electricity costs), 5.8 million kilowatt-hours, and 8.6 million pounds of CO2 with Optimum Energy.

Baylor University in Waco, TX, had a typical chiller plant—it ran well, but it was a hodgepodge of equipment and it was managed manually. Operators judged once per shift when to add or shed electricity load based on demand. That imprecise, inconsistent process made the plant inefficient.

Kenneth Haltom, who manages Baylor’s energy services through a partnership with Aramark, and his team suspected that chiller plant optimization would be the best way to increase efficiency and reduce energy costs. There was good savings potential: the eight-chiller plant, which cools 4.9 million square feet of space 365 days a year, was using 32 million kWh of electricity annually.

The team brought in Optimum Energy to assess the opportunity, and found their hypothesis was right. Optimum installed its OptimumLOOP software and OptiCx platform. The closed-loop optimization solution reads data every 30 seconds and dynamically adjusts plant equipment in real time in response to changing conditions. The software determines the best operating conditions across the plant and makes on-the-fly changes to all eight chillers, water pumps and cooling tower equipment.

“OptimumLOOP made everything automatic, from slightly adjusting a single valve to improve water flow, to shedding entire machines from the system when demand decreases,” explains Haltom. “Each chiller operates at a different output and rate, depending on what gives us the greatest efficiency.”

In the first year of operation, plant efficiency went from 0.897 kW/ton to 0.681 kW/ton. Baylor saved more than $460,000 (about 24 percent of electricity costs), 5.8 million kilowatt-hours and 8.6 million pounds of CO2. Also, air-conditioned spaces became more comfortable, and chiller equipment is now easier to maintain.

“Chiller optimization offered us the biggest bang for the buck,” says Haltom. “The product from the chiller plant is better, more consistent, and it’s now based on real-time load rather than operator guesses.”

www.optimumenergyco.com

This article originally appeared in the College Planning & Management February 2018 issue of Spaces4Learning.

Featured

  • University of Kentucky Sees Positive Results from Energy Efficiency Program

    The University of Kentucky in Lexington, Ky., recently announced the results of its Energy Program in Facilities Management, put into place eight years ago, according to a news release. Between the fiscal years of 2017 and 2025, the university’s campus grew by 13.6% while the energy use per square foot dropped by 19.2%.

  • Key Considerations for Office-to-Higher-Education Facility Conversions

    Since the onset of the COVID-19 pandemic, office-to-alternative-use conversions have become a recurring subject of urban development discourse. Office utilization rates across major U.S. cities remain below 50%, with vacancy rates exceeding 27% in San Francisco and 16% in New York. Higher education facilities present programmatic and spatial use cases that align readily with the typical characteristics of commercial office buildings.

  • Three U.S. Universities Install Acre Security Access Control Platform

    Cloud-native physical and digital security solutions company Acre Security recently announced that it has deployed its access control platform at three major universities in the U.S., according to a news release. Acre partnered with Atrium Campus to provide coverage for more than 69,000 students at the University of Virginia (UVA), George Mason University, and Rockhurst University.

  • Zurn Releases New Ductile Iron Frame Trench Drain System

    Zurn Elkay Water Solutions recently released the newest addition to its Train Drench portfolio, the Ductile Iron Frame Trench Drain System, according to a news release. The product is designed for heavy-duty applications like airports, military, universities, and more.

Digital Edition