Creating Energy-Efficient "Smart Labs"

smart labs

The UCI engineers’ design utilizes DCV technology from Aircuity, not just to generate energy savings of as much as 50 percent, but also to supply key safety information about the building in the form of air quality data in the lab.

Scientific research labs represent a huge portion of the energy demand of a university campus: in many cases, as much as two-thirds of a campus’ energy use can be attributed to research labs. While it may seem clear that labs would be a great place to start when looking to go greener and reduce energy demand, the difficulty of doing so without sacrificing safety can often pose a roadblock. Faced with this challenge, and looking to support their mission to be the world-class leader in research and to attract and retain the best talent, a group of engineers at the University of California Irvine (UCI) came up with the concept of Smart Labs: a design that can reduce energy consumption by up to 50 percent in research labs.

Smart Labs is an efficient recipe implemented by UCI to reduce energy use and provide better Indoor Environmental Quality (IEQ) in labs. Smart Labs was initially implemented by UCI and is an energy conservation and technology-enabled approach, consisting of seven Smart Lab Essentials. The seven essentials are: lower system pressure drop; demand-based ventilation dynamic, digital control systems; fume hood airflow optimization; exhaust fan discharge velocity optimization; continuous commissioning with automatic cross-functional platform fault detection; and demand-based, LED lighting with controls.

The implementation of these essentials is at the heart of how the Smart Labs approach reduces energy use so drastically while maintaining strict adherence to safety regulations. UCI has applied the design to 13 building across campus, reducing energy use by an average 61 percent.

The UCI engineers tasked with designing the Smart Labs approach focused on how to most efficiently and effectively control building ventilation. The resulting design utilizes DCV technology from Aircuity, not just to generate energy savings of as much as 50 percent, but also to supply key safety information about the building in the form of air quality data.

www.aircuity.com

This article originally appeared in the College Planning & Management February 2018 issue of Spaces4Learning.

Featured

  • Little Grand Market

    Designing for Belonging: Why Student Wellness Starts with Space

    From walkable site planning to flexible interiors, intentional design choices play a critical role in how students experience comfort, connection, and community.

  • Northeastern University Breaks Ground on New Housing Community

    Northeastern University recently announced the groundbreaking of a new student housing community on its campus in Boston, Mass., according to a news release. The university is partnering with American Campus Communities (ACC) for development of the project, which will have the capacity for 1,200 students and has a scheduled completion date of fall 2028.

  • LAN, Inc. Opens Office in College Station, Texas

    Lockwood, Andrews & Newnam, Inc. (LAN) recently announced the opening of a new office in College Station, Texas, to support its regional client base, according to a news release. The organization provides engineering, design, and program management services for water, wastewater, transportation, stormwater, and education clients in the Brazos Valley.

  • sapling sprouting from a cracked stone

    Lessons in Resilience: Disaster Recovery in Our Schools

    Facility managers play a pivotal role in how well a school weathers and recovers from a crisis. Whether it's a hurricane, a flood, a tornado, or a man-made event, preparation determines resilience.

Digital Edition