Creating Energy-Efficient "Smart Labs"

smart labs

The UCI engineers’ design utilizes DCV technology from Aircuity, not just to generate energy savings of as much as 50 percent, but also to supply key safety information about the building in the form of air quality data in the lab.

Scientific research labs represent a huge portion of the energy demand of a university campus: in many cases, as much as two-thirds of a campus’ energy use can be attributed to research labs. While it may seem clear that labs would be a great place to start when looking to go greener and reduce energy demand, the difficulty of doing so without sacrificing safety can often pose a roadblock. Faced with this challenge, and looking to support their mission to be the world-class leader in research and to attract and retain the best talent, a group of engineers at the University of California Irvine (UCI) came up with the concept of Smart Labs: a design that can reduce energy consumption by up to 50 percent in research labs.

Smart Labs is an efficient recipe implemented by UCI to reduce energy use and provide better Indoor Environmental Quality (IEQ) in labs. Smart Labs was initially implemented by UCI and is an energy conservation and technology-enabled approach, consisting of seven Smart Lab Essentials. The seven essentials are: lower system pressure drop; demand-based ventilation dynamic, digital control systems; fume hood airflow optimization; exhaust fan discharge velocity optimization; continuous commissioning with automatic cross-functional platform fault detection; and demand-based, LED lighting with controls.

The implementation of these essentials is at the heart of how the Smart Labs approach reduces energy use so drastically while maintaining strict adherence to safety regulations. UCI has applied the design to 13 building across campus, reducing energy use by an average 61 percent.

The UCI engineers tasked with designing the Smart Labs approach focused on how to most efficiently and effectively control building ventilation. The resulting design utilizes DCV technology from Aircuity, not just to generate energy savings of as much as 50 percent, but also to supply key safety information about the building in the form of air quality data.

www.aircuity.com

This article originally appeared in the College Planning & Management February 2018 issue of Spaces4Learning.

Featured

  • T&T Construction Management Group Completes Pasco High School Expansion

    Pasco High School in Dade City, Fla., recently announced that it has completed an expansion project in partnership with T&T Construction Management Group, Inc., Harvard Jolly Architecture, and Williams Company.

  • Construction Begins on East Austin CTE-Focused High School

    The Del Valle Independent School District recently announced that construction has begun on a new CTE-focused high school in Austin, Texas, according to a news release. Del Valle High School will measure in at 473,338 square feet and have the capacity for 2,400 students.

  • Tennessee State University Gains Approval for New Engineering Facility

    Tennessee State University in Nashville, Tenn., recently announced that it has received approval from the Tennessee State Building Commission to build a new engineering building on campus, according to a university news release. The 70,000-square-foot, $50-million facility will play home to the university’s engineering programs and the Applied & Industrial Technology program.

  • University of Kentucky Receives $150M Gift Toward New Arts District

    The University of Kentucky’s Board of Trustees recently received a $150-million gift from The Bill Gatton Foundation, according to a university news release, to build a new arts district on the campus in Lexington, Ky. The new district will feature a new College of Fine Arts building and a multi-hundred-seat theater, among other amenities.

Digital Edition