New Study from DesignLights Consortium: Innovative Lighting Technology Can Yield Huge Savings
Medford, Mass. – Commercial buildings such as schools, offices, and industrial facilities can reap significant energy savings by tapping a readily available but under-utilized technology – networked lighting controls (NLCs) , according to a recent study released by DesignLights Consortium (DLC), a Massachusetts-based non-profit devoted to accelerating the widespread adoption of energy efficient lighting across the US and Canada.
The study, Energy Savings Potential of DLC Commercial Lighting and Networked Lighting Controls, provides good news for building and facility managers eager to boost their energy savings. With light-emitting diodes (LEDs) currently penetrating less than 13 percent of the US commercial and industrial lighting market, there is still plenty of opportunity for savings through this technology alone. The DLC’s new report shows that’s only a piece of the puzzle, however. Adding NLCs at the time of LED installation can boost efficiency by an average of 47 percent savings potential equivalent over five years to 75 terawatt hours (tWh) of electricity, or about 17 times the 4.5 tWh annual output of the Hoover Dam, according to the report.
“LEDs are the fastest way to reduce energy consumed by commercial buildings, as well as the associated greenhouse gas emissions. And, they are at a crossroads, with innovations such as networked lighting controls poised to greatly increase potential energy and dollar savings,” DLC Executive Director Christina Halfpenny said. “What’s more, NLCs are a gateway to smart buildings, promising an array of co-benefits, such as greater personal comfort through controlling light quality and intensity, better utilization of building space, and enhanced security.”
NLCs are systems in which lighting fixtures, sensors, switches and other devices are tied together through control wiring or wirelessly to enable “smart” systems that adjust for changing conditions, space usage, and other factors. For example, NLCs enable color tuning for optimal classroom illumination and remote diagnostics during when buildings are closed for vacations.
So far, uptake of NLCs has been limited by factors such as poor understanding of the technology, inadequate training of installers, and limited or poorly designed utility support. Energy Futures Group Senior Consultant Dan Mellinger, who undertook the study for the DLC, noted in a recent webinar, that aggressive promotion of NLCs by utility companies could significantly stretch the life of utility commercial lighting efficiency programs—providing energy savings for twice as long as compared with focusing on LEDs alone, with savings persisting through 2030.
“It is critically important that NCLs are promoted, recommended, and installed now—at the time of LED adoption—so we don’t strand that savings potential,” Mellinger said.
The DLC recommends that building managers interested in transitioning to NLCs look for newer, standards-based systems that are simpler to install and use. The DLC’s Networked Lighting Control Qualified Products List details which systems are standards-based, which come pre-installed within light fixtures, and the comparative complexity of installing various products. Another essential step involves exploring rebates available from local electric utilities, which can typically reduce upfront project costs by 20 to 25 percent. There are currently more than 6,500 rebates available in the US for DLC-qualified LED lamps and luminaires, with the average per product rebate close to $80.
“This new study highlights an important tool for bringing down the consumption and cost of electricity in a range of building types. Networked lighting controls are low-hanging fruit in the quest for greater energy efficiency and the path to smart buildings in the commercial and industrial sector,” Halfpenny said.
For more information, visit the DLC website.