University of Maryland Breaks Ground on New Chemistry Building

On the campus of the University of Maryland in College Park, Md., officials gathered recently to break ground on a new 105,000-square-foot chemistry building. The facility will serve the Department of Chemistry and Biochemistry and provide space for research and innovations in fields like advanced materials, energy storage, nanoscience, quantum chemistry and drug discovery and delivery.

“Today, we break ground on a research building that will accelerate innovation for the University of Maryland’s Department of Chemistry and Biochemistry,” said university president Darryll J. Pines. “Thanks to investment by the state of Maryland and generous partners, this new facility gives us a competitive edge at a critical time to tackle grand challenges with leading technologies.”

The facility will feature amenities like 34 research labs, two core research facilities, and about 13,000 square feet of collaboration space. It will also have a grand colloquia and events venue for conferences and celebrations, as well as 12 smaller meeting and huddle rooms. The project is being funded through the state of Maryland’s capital budget.

“This new building will expand our legacy of leadership in the chemical sciences,” said Amitabh Varshney, dean of the university’s College of Computer, Mathematical, and Natural Sciences. “In this new chemistry building, our faculty and students will create nanomaterials for next-generation biosensors, fabrics and batteries; develop biomolecules functionalized to treat human diseases; and explore the chemistry required for quantum devices.”

The new building comes with a price tag of $116 million, $105 million of which is coming from the state, Pines said at the groundbreaking ceremony. It was designed by architectural firm Ballinger, and construction will be done by the Whiting-Turner Contracting Company. The building is scheduled to open to students in 2023.

“We aim to be a Top 10 chemistry and biochemistry program, and this new building is the physical catalyst necessary to help us achieve that goal,” said Department of Chemistry and Biochemistry Professor and Chair Janice Reutt-Robey.

About the Author

Matt Jones is senior editor of Spaces4Learning. He can be reached at [email protected].

Featured

  • Massachusetts K–12 District Selects Architect for New Junior High

    Swansea Public Schools in Swansea, Mass., recently announced that it has selected Finegold Alexander Architects to design a new junior high school for the district, according to a news release. The firm will create the Feasibility Study and Schematic Design for Joseph Case Junior High School after a lengthy selection process by the Massachusetts School Building Authority (MSBA).

  • blurry image capturing students navigating crowded hallways between classes

    How Human Behavior Data Is Reshaping Campus Facilities Management

    The ebb and flow of students, faculty, and administrators across a campus have a larger impact on maintenance, cleaning, and sustainability than many realize.

  • Spaces4Learning Trends & Predictions for Educational Facilities in 2026: Part II

    As education leaders look toward 2026, the design of K–12 and higher education facilities is being reshaped by powerful, converging forces. Survey respondents point to the rapid growth of Career and Technical Education, deeper alignment with workforce and industry needs, and the accelerating influence of AI and emerging technologies.

  • California K–12 District Completes Elementary School Campus Replacement

    The West Contra Costa Unified School District (WCCUSD) in Richmond, Calif., recently announced the completion of a replacement campus for Lake Elementary School, according to a news release. The school has capacity for 470 students between Transitional Kindergarten (TK) and sixth grade.

Digital Edition