Does Using An Orbital Scrubber Make A Difference?

Education facility managers and administrators struggle to balance limited operational budgets and a need to maintain clean and healthy schools for their students and faculty.

Subject to continuous foot traffic, school floors become soiled quickly and that dirt is tracked throughout the building. Soiled floors not only detract from the overall aesthetics of the facility, but slick dirt and grime can cause slip and fall hazards while dust and allergens adversely impact indoor air quality (IAQ).

Numerous studies have identified poor IAQ as a key contributor to the development of asthma in young people and the spread of other illnesses among students and faculty. These illnesses lead to increased absenteeism, which is directly linked to poorer classroom performance.

Orbital scrubbers allow maintenance teams to maintain a high level of cleanliness with minimal chemical and water usage. By actively removing dirt and grime, as well as the chemical residue that attracts dirt, orbital scrubbers help maintenance staff to keep the school healthier. The introduction of orbital scrubbers has allowed school districts across the country to maximize operational resources, enhance the learning environment while continuing to achieve a high level of appearance that meets the expectations of parents and staff.

While orbital scrubbers achieve a high level of performance for daily scrubbing, these machines also offer the flexibility to be used for deep scrubbing and chemical-free floor finish removal. Traditionally, the deep scrub and recoat process required many hours of labor, multiple machines and harsh chemicals. Orbital scrubbers allow schools to perform this operation with water only — no chemicals — helping schools to enjoy significant budget savings while introducing fewer chemicals in to their facilities.

This article originally appeared in the issue of .

About the Author

Scott Keller is a market manager for Nilfisk, Inc. (www.advance-us.com, www.clarkeus.com). He can be reached at 763/745-3824.

Featured

  • University of Kansas Opens $400M Football Stadium Reconstruction

    The University of Kansas in Lawrence, Kan., recently announced that the $400-million reconstruction of David Booth Kansas Memorial Stadium is complete in time for the 2025 football season, according to a news release. The university partnered with Turner Construction Company on the project.

  • UNL Kiewit Hall

    Designing for Engineering Excellence: Integrating Sustainability and Wellness at UNLs Kiewit Hall

    Kiewit Hall at the University of Nebraska-Lincoln exemplifies how academic institutions can integrate sustainability and wellness into modern learning environments. With an integrated and collaborative team approach, Kiewit Hall addresses enhanced learning and creativity, physical health, and mental wellness, and fosters a sense of community through innovative design, operations, and policy solutions.

  • UCNJ Launches $30M Modernization of Physical Education Center

    The Union College of Union County (UCNJ) in Cranford, N.J., recently broke ground on a new $30-million modernization project for its Physical Education Center (PECK), according to a news release. The college partnered with DIGroup Architecture for the project’s design, transitioning the existing 42,000-square-foot structure into a campus hub for student athletics and campus life.

  • Average Annual Number of Tornadoes per State

    New Tornado Wind Load Design Criteria in IBC Offer Improvements to Life Safety

    For the first time in U.S. building code history, the 2024 International Building Code (IBC) includes tornado wind load design criteria, marking a significant advancement in life-safety provisions.

Digital Edition