Innovation in Three Dimensions

Additive technology is changing the world. For researches engaged in fabrication-aided design, additive technology it is not just a 3D printer. It’s an idea engine. No longer does thinking, designing or fabricating need to happen in one dimension, color, texture or material. No longer will researchers be held back or encounter complicated roadblocks to proving hypothesis or bringing new ideas to life. Traditional manufacturing is centered on fabricating with homogeneous materials, but today, with additive technology, we can think about materials in a completely different way.

Imagine if you could design and fabricate from the bottom up, with pure control over the microscopic properties of the materials you are using. In the world of painting, this might be pixel by pixel, in biology it is cell by cell and in 3D printing this is voxel by voxel, allowing researchers to create almost anything. From art with photorealistic color, to biomimics of the body that look and feel real, to 3D printed materials that mimic traditional building materials of brick or wood, we can draw on those strengths with a new aesthetic that put CGI to shame. Multi-material machines, like the ones academic researchers and developers use to create new design parameters, are changing the way we design, fabricate and manufacture today.

So, the advice we have for you — think smaller; voxel small — and stop letting layers or CAD hold you back. Let your fabrication-aided design be your guide and let your ideas be your only limitation. Many leaders in innovation, including those at Columbia, MIT, Fraunhoefer Institute, Singapore University of Technology and Duke University, are already using this new design consideration.

This article originally appeared in the issue of .

About the Author

Ohad Meyuhas is the director of Academic Research and the resident thinker/tinker at Stratasys, partnering with global researchers who are changing the world one voxel at a time. He can be reached at edu.curriculum@stratasys.com.

Featured

  • dormitory with green roofs, solar panels, balconies, and labeled architectural annotations

    2025 Residence Hall Design Trends Focus on Sustainability, Flexibility, Community, Technology, and Well-Being

    With the most technically advanced Gen Z (born between 1997 and 2012) at the helm, residence hall design trends for 2025 look to focus on flexible spaces, health and wellness, sustainability, community, and digital technology.

  • Designing a Performing Arts Center from a PE Perspective

    Designing a top-tier performing arts facility for a high school is a complex endeavor that demands a delicate balance between advanced technical specifications and practical budget considerations. Nevertheless, it represents a crucial initiative that enriches educational and community engagements.

  • Greenheck Debuts New Energy Recovery Ventilator

    Greenheck recently released a new energy recovery ventilator, the ERVi, designed for small indoor spaces like basements and mechanical rooms, according to a news release. The hardware can fit through a 30-inch door and be mounted on the ceiling for retrofit and decarbonization projects.

  • Texas A&M Adds ALPR Technology to Parking Solutions

    Texas A&M University in College Station, Texas, recently integrated automatic license plate recognition (ALPR) technology into its parking services and enforcement strategies, according to a news release. The university’s Transportation Services division deployed Genetec AutoVu ALPR to manage the campus’ 36,000+ parking spaces.