Creating Energy-Efficient "Smart Labs"

smart labs

The UCI engineers’ design utilizes DCV technology from Aircuity, not just to generate energy savings of as much as 50 percent, but also to supply key safety information about the building in the form of air quality data in the lab.

Scientific research labs represent a huge portion of the energy demand of a university campus: in many cases, as much as two-thirds of a campus’ energy use can be attributed to research labs. While it may seem clear that labs would be a great place to start when looking to go greener and reduce energy demand, the difficulty of doing so without sacrificing safety can often pose a roadblock. Faced with this challenge, and looking to support their mission to be the world-class leader in research and to attract and retain the best talent, a group of engineers at the University of California Irvine (UCI) came up with the concept of Smart Labs: a design that can reduce energy consumption by up to 50 percent in research labs.

Smart Labs is an efficient recipe implemented by UCI to reduce energy use and provide better Indoor Environmental Quality (IEQ) in labs. Smart Labs was initially implemented by UCI and is an energy conservation and technology-enabled approach, consisting of seven Smart Lab Essentials. The seven essentials are: lower system pressure drop; demand-based ventilation dynamic, digital control systems; fume hood airflow optimization; exhaust fan discharge velocity optimization; continuous commissioning with automatic cross-functional platform fault detection; and demand-based, LED lighting with controls.

The implementation of these essentials is at the heart of how the Smart Labs approach reduces energy use so drastically while maintaining strict adherence to safety regulations. UCI has applied the design to 13 building across campus, reducing energy use by an average 61 percent.

The UCI engineers tasked with designing the Smart Labs approach focused on how to most efficiently and effectively control building ventilation. The resulting design utilizes DCV technology from Aircuity, not just to generate energy savings of as much as 50 percent, but also to supply key safety information about the building in the form of air quality data.

www.aircuity.com

This article originally appeared in the College Planning & Management February 2018 issue of Spaces4Learning.

Featured

  • Addressing the Housing Affordability Crisis Through Creative Campus Development

    Many Southern California college and university campuses are living amidst surging housing costs, driving the need to house more of their populations on campus. Especially for community colleges, the need to support millions of unhoused and housing insecure students has become a prominent issue that lawmakers and institutions alike are trying to solve.

  • DLR Group Hires Higher Education Business Development Leader

    Integrated design firm DLR Group recently announced that Senior Associate Megan Todd will serve as its new Higher Education Business Development Leader, according to a news release. Her responsibilities will include building the firm’s reach and client relationships in the California higher education sector, based out of San Diego.

  • Aims Community College to Build Workforce Innovation Center

    Aims Community College in Greeley, Colo., recently announced that it has broken ground on its new Aims Workforce Innovation Center (AWIC), according to a news release. The facility for workforce development, entrepreneurship, and education has a scheduled opening date of fall 2026.

  • S4L Launches 2025 Facilities and Construction Brief Survey

    Spaces4Learning recently launched its 2025 Facilities and Construction Brief Survey, which gathers information on K–12 and higher education construction projects nationwide from the previous year. The data we get from you, our readers, forms an industry report offering an overview of current trends in school facilities.

Digital Edition