How do we specify glass railings?

Glass design and engineering analysis can be inconsistent across projects. There are several possible reasons for this including the treatment of guardrails as a product rather than an engineered structure, general inexperience with glass as an engineered material, and limited access to glass design software in the U.S.

To ensure you have all the pertinent details, ask suppliers to provide you with a comprehensive proposal, including detailed takeoffs with specific inclusions or exclusions for each railing style within the project scope. These details should include aspects such as finish, linear footage, structural attachment, and makeup. Additionally, request a submittal package that includes 3D renderings based on the architectural and structural specifics for the project.

High-definition surveying (HDS) technology offers tremendous benefits over conventional surveying. It allows for the capture of thousands of critical measurements with precision accuracy, thereby significantly reducing the need for fabrication rework. It also offers a much faster track to the manufacturing process by eliminating the risk of human error and saving weeks of manual field measuring.

Regardless of the method selected for analysis, there are two key principles that should be considered when specifying glass railing: the elastic properties of laminate interlayers (and how they change with temperature and load duration), and understanding that local stresses—e.g., contact materials, support size, and hole size—are critical. In light of these varying factors, it’s recommended that a good finite element program be used to accurately determine glass stresses instead of any manual analysis.

Glass analysis is the most critical aspect of specifying point-supported glass due to life-safety factors. It’s essential that those who have a stake in a project understand this and take appropriate measures to ensure that building code requirements are met.

This article originally appeared in the College Planning & Management June 2019 issue of Spaces4Learning.

About the Author

Dan Stachel is vice president of Trex Commercial Products (www.trexcommercial.com).

Featured

  • Texas A&M Adds ALPR Technology to Parking Solutions

    Texas A&M University in College Station, Texas, recently integrated automatic license plate recognition (ALPR) technology into its parking services and enforcement strategies, according to a news release. The university’s Transportation Services division deployed Genetec AutoVu ALPR to manage the campus’ 36,000+ parking spaces.

  • Craig Gaulden Davis Architecture Announces Merger with PBK

    Craig Gaulden Davis Architecture (CGD), based in South Carolina and Maryland, recently announced that it has merged with PBK, the largest K–12 architectural firm in the U.S., according to a news release. The firm will operate as Craig Gaulden Davis | PBK with 31 offices across the country.

  • dormitory with green roofs, solar panels, balconies, and labeled architectural annotations

    2025 Residence Hall Design Trends Focus on Sustainability, Flexibility, Community, Technology, and Well-Being

    With the most technically advanced Gen Z (born between 1997 and 2012) at the helm, residence hall design trends for 2025 look to focus on flexible spaces, health and wellness, sustainability, community, and digital technology.

  • modern college building with circuit and brain motifs

    Anthropic Introduces Claude for Education

    Anthropic has launched a version of its Claude AI assistant tailored for higher education institutions. Claude for Education "gives academic institutions secure, reliable AI access for their entire community," the company said, to enable colleges and universities to develop and implement AI-enabled approaches across teaching, learning, and administration.