Saddleback College Opens New STEM Facility

Saddleback College in Mission Viejo, Calif., recently opened a new STEM facility on its campus. The Advanced Technology and Applied Sciences (ATAS) building measures in at 52,913 square feet and provides multidisciplinary space for labs and classrooms, general instructional areas, and administrative space. The building will serve career technical education students in subjects like architecture and drafting, environmental sciences, communications, horticulture and more.

The college partnered on the project with construction firm McCarthy Building Companies, Inc. and architecture and design firm HED.

“We’re ecstatic to open this new facility for our students, faculty, staff and broader Orange County community,” said Ann-Marie Gabel, Vice Chancellor, Business Services, for the South Orange County Community College District. “It’s a beautiful space, designed to promote student-to-student collaboration and a sense of openness as the facility blends into the gorgeous Southern California landscape. Students can enjoy the local habitat and feel more connected to nature with onsite butterfly gardens, bird and wildlife areas.”

A news release notes that the ATAS building has achieved a LEED Gold rating equivalency with passive design strategies intended to minimize energy use. The main part of the building connects directly with campus sidewalks. Students enter through one of two entrances into a central collaboration space that opens into a courtyard. Two wings containing classrooms and lab space flank the courtyard, while landscape areas serve as outdoor learning gardens.

“The ATAS project enabled us to integrate the campus, with its highly beautiful natural surroundings, while exceeding the SOCCCD’s goals for the space,” said Martha Ball, Principal at HED. “The design considerations employed were a celebration of the natural habitat, which surrounds the Saddleback College campus. With energy efficiency in mind, the ATAS facility effectively harvests daylight to reduce the need for electrical lighting and derives 35 percent of its energy from solar panels. This, combined with an efficient wall-to-window ratio, are the main strategies to achieve energy savings. Additionally, the concrete structure provides thermal mass to absorb heat with nightly release, and longevity through a robust structure.”

About the Author

Matt Jones is senior editor of Spaces4Learning. He can be reached at mjones@1105media.com.

Featured

  • Fort Collins to Convert 1980s Office Park into Junior High School

    The Liberty Common School, a charter-public school in Fort Collins, Colo., recently broke ground on an adaptive reuse project that will convert an 1980s-era office park into a 45,000-square-foot junior high school for seventh- and eighth-grade students, according to a news release.

  • Greenheck Launches New Series of Rooftop Units

    Air movement, control, and conditioning solutions provider Greenheck recently launched a new line of rooftop units that merge the conveniences of traditional rooftop ventilators and dedicated outdoor air systems, according to a news release. The Model RT controls temperature and humidity for indoor comfort.

  • Addressing the Housing Affordability Crisis Through Creative Campus Development

    Many Southern California college and university campuses are living amidst surging housing costs, driving the need to house more of their populations on campus. Especially for community colleges, the need to support millions of unhoused and housing insecure students has become a prominent issue that lawmakers and institutions alike are trying to solve.

  • bar graph with the bars made out of abstract cinder blocks and other construction materials

    Spaces4Learning 2025 Trends in K–12: Materials & Construction

    With 2025 well underway, it’s time to take a look at some broader trends submitted by you, our Spaces4Learning readership. We asked for your thoughts on topics like classroom design, health & safety, materials & construction, and technology in both K–12 and higher-education environments. Below is a roundup of 2025 trends in K–12 materials and construction from the experts in the trenches.