Challenges to STEM Education and How to Overcome Them

Most companies naturally want the most innovative and skilled work talent, and their search for skilled workers is increasingly focused on the fields of science, technology, engineering and mathematics (STEM).

The institutions of higher education equipping these students with workforce skills, however, continue to struggle with several roadblocks. To effectively grow STEM careers, universities must shift their focus to retaining STEM students, attracting talented young minds and adapting to the demands of these booming industries. Here’s how.

Boosting Diversity

Although STEM is a major driver of the nation’s job market, the disparity between genders and minorities leaves a lot of room to be desired. Despite an increase in the number of female, minority and disabled students pursuing degrees in STEM, this progress still doesn’t alleviate the historic patterns of underrepresentation in these groups — nor does it reflect their growth in the overall workforce, according to the Committee on Equal Opportunities in Science and Engineering (www.nettercenter.upenn.edu).

Due to their academic positions as centers for innovation and strong local presence in their respective communities, universities are in an ideal position to create inclusion. By partnering with K–12 institutions and community development organizations, universities can be catalysts for change and bring higher education opportunities to minority groups.

Merit-based scholarships for local minority students, multi-institutional partnerships that promote policies to increase diversity and collaboration between minority-serving institutions and research universities are necessary to make this movement a reality. These tactics have been used by the National Science Foundation for years, and in their own words, it has been central to “engaging higher education institutions in improving STEM diversity.”

Blocking Student Disenchantment

Although more students are choosing to pursue STEM degrees, many of these programs have a retention problem. The rigors of freshman year might be deemed as a “rite of passage,” but many students entering these STEM programs encounter more than they expected. As these students grapple with their schedules and stress, they have very little breathing room to practice and study subjects that truly interest them.

Modern curriculums require students to sit through tedious prerequisite classes for years before they can even touch projects that give them real-world training in their chosen major. This ultra-traditional model — in addition to the lack of inclusion and support — ultimately discourages students from continuing a STEM education.

However, new breeds of STEM institutions are transforming the industry and applying student-centered approaches to their curriculums. Some of the nation’s top engineering colleges now offer students project-based learning, mentorship and access to internship opportunities as early as their first day of classes. For example, the University of Utah ditched tradition and built its Lassonde Studios entrepreneurship building — a 20,000-square-foot innovation hub decked out with maker spaces, 3D printers and other game-changing resources — to empower students to bring their creative ideas to life.

Reframing Failure

This new generation of students are entrepreneurial, inquisitive and strong-willed. They have never known a world without the Internet, and they don’t know what it’s like to not have instant access to information. These students want more flexibility, more hands-on, interactive training and fewer textbooks — and this requires a new outlook on failure.

In STEM, many problems often have more than one solution. You can reach the same answer with multiple different formulas, or program a robot in many different ways; this lack of rigidity fuels creativity, but it also opens the door to more failures — and that’s OK. Experimentation is key to innovation, so students should be taught to embrace failure — not fear it.

As our nation continues to push the boundaries of technology and science, universities and colleges must step up to the plate and foster the skills that these STEM industries desperately need in their employees. With a focus on inclusiveness and hands-on training, universities can truly be the frontrunners for STEM growth.

About the Author

Scott Rhodes is vice provost of Enrollment for Florida Polytechnic University (https://floridapolytechnic.org/) in Lakeland, FL. With an 18-year background in higher education, he leads enrollment and recruitment strategies for the university. His responsibilities encompass undergraduate admissions, graduate enrollment and enrollment marketing, financial aid, student records and registration and enrollment market research. He can be reached at [email protected].

Featured

  • Niles West High School Natatorium Renovation

    Natatoriums are highly specialized spaces, and luminaires in this setting face several unique challenges. Perhaps the most significant is corrosion, which is exacerbated by high indoor humidity, condensation, and pool chemicals, often resulting in material degradation in luminaires not certified to perform in corrosive environments.

  • DLR Group Appoints New K–12 Education Practice Leader

    Integrated design firm DLR Group recently announced that it has named its new global K–12 Education leader, Senior Principal Carmen Wyckoff, AIA, LEED AP, according to a news release. Her teams have members in all 36 of the firm’s offices in the U.S., Puerto Rico, the U.S. Virgin Islands, Europe, and Asia.

  • UNL Kiewit Hall

    Designing for Engineering Excellence: Integrating Sustainability and Wellness at UNLs Kiewit Hall

    Kiewit Hall at the University of Nebraska-Lincoln exemplifies how academic institutions can integrate sustainability and wellness into modern learning environments. With an integrated and collaborative team approach, Kiewit Hall addresses enhanced learning and creativity, physical health, and mental wellness, and fosters a sense of community through innovative design, operations, and policy solutions.

  • Spaces4Learning Trends & Predictions for Educational Facilities in 2026: Part II

    As education leaders look toward 2026, the design of K–12 and higher education facilities is being reshaped by powerful, converging forces. Survey respondents point to the rapid growth of Career and Technical Education, deeper alignment with workforce and industry needs, and the accelerating influence of AI and emerging technologies.

Digital Edition