GPS Comes to Campus

The Global Positioning System (GPS) that has now become so commonplace began with the launch of the system’s first navigational satellite in 1978. Since that time, a number of satellites have been deployed and subsequently replaced by newer models, resulting in a constellation of roughly 25 to 30 units orbiting the earth at 11,000 miles at any given time. GPS was originally developed for the military, but has since become widely used for civilian purposes. Today, GPS has proliferated into numerous areas, including many applications at colleges and universities.

How It Works
GPS works through an extension of triangulation, in which fixed navigational markers can be used to calculate a known location in space. A GPS receiver acquires the signals of a number of the orbiting satellites and then computes and displays its location, often to within several feet. When integrated with digital maps such as roads and streets in car units, the GPS provides directions to destinations. GPS has been incorporated into a broad array of devices, and today is integral to nearly all cell phones. The term usually applied to the spatial positioning capability GPS-enables is “location aware.”

GPS is clearly a convenience and timesaver for drivers. But the system has also revolutionized other forms of travel, including aviation and marine navigation. As an avid mariner, I use GPS extensively to navigate the waters of North Carolina’s Outer Banks, often called the Graveyard of the Atlantic. Through this system, invisible channels are revealed for safe passage and forewarning is given for underwater obstacles.

The military uses GPS extensively for sea, air, and ground operations. Police, fire, and emergency medical services rely on it as well. GPS is also used in precision agriculture for crop planting and harvesting, oceanographic mapping and deep-sea drilling, underground mining, and numerous other operations. The English Channel tunnel from England to France was continuously GPS-directed during construction originating from both locations, to a precision midpoint intersection upon completion.

Research and Development
Research and development labs at a number of leading universities such as Stanford, Ohio State, and the University of Texas at Austin continue work to enhance GPS system capabilities. The University of Missouri has been very involved in the development of precision agriculture systems. Ohio University operates the Avionics Engineering Center specializing in the research, development, and evaluation of electronic navigation systems. A number of other schools are developing highly innovative GPS applications for use on campus.

Montclair State University in New Jersey developed their Campus Connect system that utilized GPS-enabled cell phones to enhance mobile learning, safety, communication, and campus navigation. This system has been widely publicized for its success. Cal Poly San Luis Obispo developed the GPS Ranger system to support student admissions efforts. The GPS Ranger enables prospective students to tour the campus through a GPS-enabled multimedia guide device. Cal Poly students developed and manage the content of the system themselves, and also participate in personal tours if desired. The system is very impressive for prospective students and demonstrates the institution’s learn-by-doing philosophy.

Campus Mapping and Safety Applications
GPS is increasingly used in campus-mapping projects in physical plant operations, in a process usually known as digital photogrammetry. GPS-enabled photomapping systems have become very popular, as demonstrated by systems such as Google Earth. Campuses in the Indiana University system have developed comprehensive online maps of their buildings and facilities to support facilities management and campus master planning. UT Austin has launched a similar project. Commercial products are now broadly incorporating GPS into asset-tracking systems, as well.

Precise campus location information has become integral to a number of commercial offerings using cell phones. Rave Wireless launched its Rave Guardian system that uses GPS-enabled cell phones to enhance student safety and security. This system can display a student’s warning signal and location on a central video display for campus security, and on Windows Mobile devices of security officers in the field. Montclair State incorporated the Rave system in its GPS Ranger system.

Students at Tufts University initiated development of the JoeyTracker system to help provide students with dynamic location information for the school’s fleet of Joey buses during routes. The system enables students to know when buses will reach designated stops, reportedly helping them avoid wait-times at bus stops at night and in bad weather. The project was developed in partnership with Ublip, a GPS products company based in Texas.

GPS has clearly arrived on campus, as demonstrated by these and other projects. Today, students have access to campus mapping and security systems through their cell phones, as well as instructional materials and course catalogs. It’s little wonder that the 2009 Horizon Report lists cell phones as one of the most significant trends for the future — thanks in some part no doubt to GPS.

About the Author

David W. Dodd is vice president of Information Technology and CIO at the Stevens Institute of Technology in Hoboken, NJ. He can be reached at 201/216-5491 or [email protected].

Featured

  • Springfield Breaks Ground on $53.7M Pipkin Middle School Rebuild

    Construction is underway on a new, state-of-the-art Pipkin Middle School in Springfield, Mo., a major step in Springfield Public Schools’ (SPS) long-term facility improvement plan, according to local news. The $53.7-million project officially broke ground in early June, following years of planning and community input aimed at modernizing aging infrastructure and addressing student capacity concerns.

  • ProTeam Launches GoFit 6 HEPA Backpack Vacuum

    Technology leader Emerson recently introduced the new ProTeam GoFit 6 HEPA backpack vacuum, according to a news release. The vacuum was designed to capture 99.97% of particulates down to 0.3 microns—including atmospheric hazards like lead dust, mold spores, and other particulates—through an advanced filtration system.

  • California High School Starts Construction on New CTE Building

    Analy High School, part of the West Sonoma County Union High School District (WSCUHSD) in Sebastopol, Calif., recently broke ground on a new Career Technical Education (CTE) Building, according to a news release. The 15,000-square-foot facility will offer specialized facilities for students in engineering, welding, culinary arts, agricultural sciences, and design thinking.

  • modern college building with circuit and brain motifs

    Anthropic Introduces Claude for Education

    Anthropic has launched a version of its Claude AI assistant tailored for higher education institutions. Claude for Education "gives academic institutions secure, reliable AI access for their entire community," the company said, to enable colleges and universities to develop and implement AI-enabled approaches across teaching, learning, and administration.

Digital Edition