Looking to the Future

Imagine the Nest Learning Thermostat perched on your wall at home. You know it helps you save energy and you can control it from anywhere with the Nest app. Now, think of hundreds of multiple devices like that collectively known as the Internet of Things (IoT) sharing data across your facility. And, imagine having a standardized dashboard that puts you in control of every energy efficient fixture in your facility.

Intelligent buildings, data sharing, and resulting behavioral changes will play a big role in impacting energy efficiency in educational facilities in the coming decade and beyond. Facility managers will spend time and resources analyzing large chunks of data generated by these IoT devices to predict trends impacting efficient energy usage and occupant comfort.

“When you are trying to analyze large sets of data, you have to make sure that you have the ability to capture all the data that really is similar,” says Ian Hadden, PE, LEED-AP BD+C, CEM, director of Energy Management Services at University of Arkansas at Little Rock.

Open source initiatives like Project Haystack now make it easier for energy managers like Hadden to analyze data constantly created by smart devices used in educational facilities.

According to Hadden, his facility purchased a system a couple of years ago, but it can only compare data within the points of a main building controller. It cannot compare energy usage across different buildings on his campus and Hadden feels the standardization and linking ability of newer systems will be vital.

“It’s critical because in modern buildings you may have two or three brands or eras of Direct Digital Control (DDC) equipment and the default point name may be supply air temperature in one, discharge air temperature in another and leaving air temperature in the third. Being able to link data from those three different controllers to a common point is a great help,” he said.

According to Hadden, “machine learning algorithms will help the ‘standard’ analysis report learn individual systems and better recognize issues as they begin before they cause inefficiencies or occupant comfort issues.”

Intelligent buildings will also provide effective predictive and preventive maintenance plans, thus reducing costly expenses in the long run. This will allow schools to take a proactive approach to indoor air quality practices and utilize resources to build new, energy efficient buildings than retrofit old ones.

However, for the pragmatic K-12 educational facility planner, much will depend on infrastructure spending in a sector that has seen prolonged neglect.

“The number one trend will be simply to have the funding to do anything. Many districts are suffering the effects of aging infrastructure and pretty much keep everything together with glue and string,” says Molly Smith, AICP, REFP, Founder, thinkSmart Planning Inc.

She hopes that school districts with modest means will do basic energy efficiency updates like efficient lighting, upgraded HVAC systems, make sure openings are properly sealed, and create district-wide policies on energy efficiency.

Prudent space management is another trend that will have a positive impact on energy consumption and cost. Hadden works on a college campus with almost 3 million square feet ranging from athletics to student housing to classrooms and research spaces, offices and swimming pools.

There is continuous usage of space and it needs to be prudently managed, otherwise “our students aren’t able to get all their course requirements in a four year span and their costs go up along with our operating costs.”

Since the launch of ENERGY STAR in the early nineties, the K-12 schools sector now has the most ENERGY STAR certified buildings in the US. According to a 2012 U.S. Environmental Protection Agency (EPA) study, buildings that were benchmarked consistently in ENERGY STAR Portfolio Manager over a three-year period reduced energy use by an average of 2.4 percent per year, for a total savings of seven percent.

According to the US Department of Energy (DoE), “on average, zero energy schools can use between 65 to 80 percent less energy than conventionally constructed schools, and the remaining energy required is supplied by renewable energy. In addition, zero energy schools can become prominent community landmarks that educate a new generation of students with science, technology, engineering, and mathematics (STEM) skills critical to our nation’s future.”

We will also see a growing trend towards outsourcing maintenance work and energy efficiency operations in public school districts and charter schools. According to a 2016 Lawrence Berkeley National Laboratory (LBNL) and the National Association of Energy Service Companies (NAESCO) study, schools spend $1.2 billion to hire services of energy service companies and three quarters of this money goes to energy efficiency related activities. The report foresees that this amount will continue to grow.

Despite new technology and innovation, the perennial champions in energy efficiency will ultimately be the building managers and occupants who go out of their way daily to reduce wastage.

This article originally appeared in the School Planning & Management April 2018 issue of Spaces4Learning.

About the Author

Sarat Pratapchandran is a writer specializing in education, environment, and healthcare. His website is www.lettersnatcher.com.

Featured

  • Springfield Breaks Ground on $53.7M Pipkin Middle School Rebuild

    Construction is underway on a new, state-of-the-art Pipkin Middle School in Springfield, Mo., a major step in Springfield Public Schools’ (SPS) long-term facility improvement plan, according to local news. The $53.7-million project officially broke ground in early June, following years of planning and community input aimed at modernizing aging infrastructure and addressing student capacity concerns.

  • ProTeam Launches GoFit 6 HEPA Backpack Vacuum

    Technology leader Emerson recently introduced the new ProTeam GoFit 6 HEPA backpack vacuum, according to a news release. The vacuum was designed to capture 99.97% of particulates down to 0.3 microns—including atmospheric hazards like lead dust, mold spores, and other particulates—through an advanced filtration system.

  • California High School Starts Construction on New CTE Building

    Analy High School, part of the West Sonoma County Union High School District (WSCUHSD) in Sebastopol, Calif., recently broke ground on a new Career Technical Education (CTE) Building, according to a news release. The 15,000-square-foot facility will offer specialized facilities for students in engineering, welding, culinary arts, agricultural sciences, and design thinking.

  • modern college building with circuit and brain motifs

    Anthropic Introduces Claude for Education

    Anthropic has launched a version of its Claude AI assistant tailored for higher education institutions. Claude for Education "gives academic institutions secure, reliable AI access for their entire community," the company said, to enable colleges and universities to develop and implement AI-enabled approaches across teaching, learning, and administration.

Digital Edition